better solution
This commit is contained in:
parent
dbc2815e28
commit
1472efcaf1
@ -1,6 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [],
|
|
||||||
"metadata": {},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 5
|
|
||||||
}
|
|
@ -1,324 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 1,
|
|
||||||
"id": "f73a28ea",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"KENLM_BUILD_PATH='/home/haskell/kenlm/build'"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "9fc5cda3",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### Preprocessing danych"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 2,
|
|
||||||
"id": "d42ddd87",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import pandas as pd\n",
|
|
||||||
"import csv\n",
|
|
||||||
"import regex as re"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 3,
|
|
||||||
"id": "f84be210",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def clean_text(text):\n",
|
|
||||||
" text = text.lower().replace('-\\\\n', '').replace('\\\\n', ' ')\n",
|
|
||||||
" text = re.sub(r'\\p{P}', '', text)\n",
|
|
||||||
"\n",
|
|
||||||
" return text"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 4,
|
|
||||||
"id": "de0c12d6",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"train_data = pd.read_csv('train/in.tsv.xz', sep='\\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)\n",
|
|
||||||
"train_labels = pd.read_csv('train/expected.tsv', sep='\\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)\n",
|
|
||||||
"\n",
|
|
||||||
"train_data = train_data[[6, 7]]\n",
|
|
||||||
"train_data = pd.concat([train_data, train_labels], axis=1)\n",
|
|
||||||
"\n",
|
|
||||||
"train_data['text'] = train_data[6] + train_data[0] + train_data[7]\n",
|
|
||||||
"train_data = train_data[['text']]\n",
|
|
||||||
"\n",
|
|
||||||
"with open('processed_train.txt', 'w') as file:\n",
|
|
||||||
" for _, row in train_data.iterrows():\n",
|
|
||||||
" text = clean_text(str(row['text']))\n",
|
|
||||||
" file.write(text + '\\n')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "846b6b42",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### Model kenLM"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 4,
|
|
||||||
"id": "3c74d4be",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"=== 1/5 Counting and sorting n-grams ===\n",
|
|
||||||
"Reading /home/haskell/Desktop/challenging-america-word-gap-prediction-kenlm/processed_train.txt\n",
|
|
||||||
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
|
||||||
"********************************Warning: <s> appears in the input. All instances of <s>, </s>, and <unk> will be interpreted as whitespace.\n",
|
|
||||||
"********************************************************************\n",
|
|
||||||
"Unigram tokens 135911223 types 4381594\n",
|
|
||||||
"=== 2/5 Calculating and sorting adjusted counts ===\n",
|
|
||||||
"Chain sizes: 1:52579128 2:896866240 3:1681624320 4:2690598656 5:3923790080\n",
|
|
||||||
"Statistics:\n",
|
|
||||||
"1 4381594 D1=0.841838 D2=1.01787 D3+=1.21057\n",
|
|
||||||
"2 26800631 D1=0.836734 D2=1.01657 D3+=1.19437\n",
|
|
||||||
"3 69811700 D1=0.878562 D2=1.11227 D3+=1.27889\n",
|
|
||||||
"4 104063034 D1=0.931257 D2=1.23707 D3+=1.36664\n",
|
|
||||||
"5 119487533 D1=0.938146 D2=1.3058 D3+=1.41614\n",
|
|
||||||
"Memory estimate for binary LM:\n",
|
|
||||||
"type MB\n",
|
|
||||||
"probing 6752 assuming -p 1.5\n",
|
|
||||||
"probing 7917 assuming -r models -p 1.5\n",
|
|
||||||
"trie 3572 without quantization\n",
|
|
||||||
"trie 2120 assuming -q 8 -b 8 quantization \n",
|
|
||||||
"trie 3104 assuming -a 22 array pointer compression\n",
|
|
||||||
"trie 1652 assuming -a 22 -q 8 -b 8 array pointer compression and quantization\n",
|
|
||||||
"=== 3/5 Calculating and sorting initial probabilities ===\n",
|
|
||||||
"Chain sizes: 1:52579128 2:428810096 3:1396234000 4:2497512816 5:3345650924\n",
|
|
||||||
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
|
||||||
"####################################################################################################\n",
|
|
||||||
"=== 4/5 Calculating and writing order-interpolated probabilities ===\n",
|
|
||||||
"Chain sizes: 1:52579128 2:428810096 3:1396234000 4:2497512816 5:3345650924\n",
|
|
||||||
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
|
||||||
"####################################################################################################\n",
|
|
||||||
"=== 5/5 Writing ARPA model ===\n",
|
|
||||||
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
|
||||||
"****************************************************************************************************\n",
|
|
||||||
"Name:lmplz\tVmPeak:9201752 kB\tVmRSS:2564 kB\tRSSMax:7648448 kB\tuser:506.342\tsys:106.578\tCPU:612.92\treal:1564.6\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"!$KENLM_BUILD_PATH/bin/lmplz -o 5 --skip_symbols < processed_train.txt > model/model.arpa"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 5,
|
|
||||||
"id": "dc65780b",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Reading model/model.arpa\n",
|
|
||||||
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
|
||||||
"****************************************************************************************************\n",
|
|
||||||
"SUCCESS\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"!$KENLM_BUILD_PATH/bin/build_binary model/model.arpa model/model.binary"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 6,
|
|
||||||
"id": "2087eb80",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"!rm processed_train.txt"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 7,
|
|
||||||
"id": "4ba1e592",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"!rm model/model.arpa"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"id": "e41f7951",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"### Predykcje"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 32,
|
|
||||||
"id": "6865301b",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import kenlm\n",
|
|
||||||
"import csv\n",
|
|
||||||
"import pandas as pd\n",
|
|
||||||
"import regex as re\n",
|
|
||||||
"from math import log10\n",
|
|
||||||
"from nltk import word_tokenize\n",
|
|
||||||
"from english_words import english_words_alpha_set"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 4,
|
|
||||||
"id": "e32de662",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model = kenlm.Model('model/model.binary')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 28,
|
|
||||||
"id": "c2535482",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def clean_text(text):\n",
|
|
||||||
" text = text.lower().replace('-\\\\n', '').replace('\\\\n', ' ')\n",
|
|
||||||
" text = re.sub(r'\\p{P}', '', text)\n",
|
|
||||||
"\n",
|
|
||||||
" return text"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 29,
|
|
||||||
"id": "2308ccad",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def predict_probs(w1, w2, w4):\n",
|
|
||||||
" best_scores = []\n",
|
|
||||||
" for word in english_words_alpha_set:\n",
|
|
||||||
" text = ' '.join([w1, w2, word, w4])\n",
|
|
||||||
" text_score = model.score(text, bos=False, eos=False)\n",
|
|
||||||
" if len(best_scores) < 20:\n",
|
|
||||||
" best_scores.append((word, text_score))\n",
|
|
||||||
" else:\n",
|
|
||||||
" is_better = False\n",
|
|
||||||
" worst_score = None\n",
|
|
||||||
" for score in best_scores:\n",
|
|
||||||
" if not worst_score:\n",
|
|
||||||
" worst_score = score\n",
|
|
||||||
" else:\n",
|
|
||||||
" if worst_score[1] > score[1]:\n",
|
|
||||||
" worst_score = score\n",
|
|
||||||
" if worst_score[1] < text_score:\n",
|
|
||||||
" best_scores.remove(worst_score)\n",
|
|
||||||
" best_scores.append((word, text_score))\n",
|
|
||||||
" probs = sorted(best_scores, key=lambda tup: tup[1], reverse=True)\n",
|
|
||||||
" pred_str = ''\n",
|
|
||||||
" for word, prob in probs:\n",
|
|
||||||
" pred_str += f'{word}:{prob} '\n",
|
|
||||||
" pred_str += f':{log10(0.99)}'\n",
|
|
||||||
" return pred_str"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 30,
|
|
||||||
"id": "7245cf38",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)\n",
|
|
||||||
"test_data = pd.read_csv('test-A/in.tsv.xz', sep='\\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 35,
|
|
||||||
"id": "ac24ff37",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"with open('dev-0/out.tsv', 'w') as file:\n",
|
|
||||||
" for index, row in dev_data.iterrows():\n",
|
|
||||||
" left_text = clean_text(str(row[6]))\n",
|
|
||||||
" right_text = clean_text(str(row[7]))\n",
|
|
||||||
" left_words = word_tokenize(left_text)\n",
|
|
||||||
" right_words = word_tokenize(right_text)\n",
|
|
||||||
" if len(left_words) < 2 or len(right_words) < 2:\n",
|
|
||||||
" prediction = ':1.0'\n",
|
|
||||||
" else:\n",
|
|
||||||
" prediction = predict_probs(left_words[len(left_words) - 2], left_words[len(left_words) - 1], right_words[0])\n",
|
|
||||||
" file.write(prediction + '\\n')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 37,
|
|
||||||
"id": "a18b6ebd",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"with open('test-A/out.tsv', 'w') as file:\n",
|
|
||||||
" for index, row in test_data.iterrows():\n",
|
|
||||||
" left_text = clean_text(str(row[6]))\n",
|
|
||||||
" right_text = clean_text(str(row[7]))\n",
|
|
||||||
" left_words = word_tokenize(left_text)\n",
|
|
||||||
" right_words = word_tokenize(right_text)\n",
|
|
||||||
" if len(left_words) < 2 or len(right_words) < 2:\n",
|
|
||||||
" prediction = ':1.0'\n",
|
|
||||||
" else:\n",
|
|
||||||
" prediction = predict_probs(left_words[len(left_words) - 2], left_words[len(left_words) - 1], right_words[0])\n",
|
|
||||||
" file.write(prediction + '\\n')"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3 (ipykernel)",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.8.10"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 5
|
|
||||||
}
|
|
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
24
run.ipynb
24
run.ipynb
@ -176,7 +176,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 32,
|
"execution_count": 1,
|
||||||
"id": "6865301b",
|
"id": "6865301b",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -192,7 +192,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 2,
|
||||||
"id": "e32de662",
|
"id": "e32de662",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -202,7 +202,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 28,
|
"execution_count": 3,
|
||||||
"id": "c2535482",
|
"id": "c2535482",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -216,17 +216,17 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 29,
|
"execution_count": 4,
|
||||||
"id": "2308ccad",
|
"id": "2308ccad",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"def predict_probs(w1, w2, w4):\n",
|
"def predict_probs(w1, w3):\n",
|
||||||
" best_scores = []\n",
|
" best_scores = []\n",
|
||||||
" for word in english_words_alpha_set:\n",
|
" for word in english_words_alpha_set:\n",
|
||||||
" text = ' '.join([w1, w2, word, w4])\n",
|
" text = ' '.join([w1, word, w3])\n",
|
||||||
" text_score = model.score(text, bos=False, eos=False)\n",
|
" text_score = model.score(text, bos=False, eos=False)\n",
|
||||||
" if len(best_scores) < 20:\n",
|
" if len(best_scores) < 12:\n",
|
||||||
" best_scores.append((word, text_score))\n",
|
" best_scores.append((word, text_score))\n",
|
||||||
" else:\n",
|
" else:\n",
|
||||||
" is_better = False\n",
|
" is_better = False\n",
|
||||||
@ -250,7 +250,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 30,
|
"execution_count": 5,
|
||||||
"id": "7245cf38",
|
"id": "7245cf38",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -261,7 +261,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 35,
|
"execution_count": 7,
|
||||||
"id": "ac24ff37",
|
"id": "ac24ff37",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -275,13 +275,13 @@
|
|||||||
" if len(left_words) < 2 or len(right_words) < 2:\n",
|
" if len(left_words) < 2 or len(right_words) < 2:\n",
|
||||||
" prediction = ':1.0'\n",
|
" prediction = ':1.0'\n",
|
||||||
" else:\n",
|
" else:\n",
|
||||||
" prediction = predict_probs(left_words[len(left_words) - 2], left_words[len(left_words) - 1], right_words[0])\n",
|
" prediction = predict_probs(left_words[len(left_words) - 1], right_words[0])\n",
|
||||||
" file.write(prediction + '\\n')"
|
" file.write(prediction + '\\n')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 37,
|
"execution_count": 8,
|
||||||
"id": "a18b6ebd",
|
"id": "a18b6ebd",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -295,7 +295,7 @@
|
|||||||
" if len(left_words) < 2 or len(right_words) < 2:\n",
|
" if len(left_words) < 2 or len(right_words) < 2:\n",
|
||||||
" prediction = ':1.0'\n",
|
" prediction = ':1.0'\n",
|
||||||
" else:\n",
|
" else:\n",
|
||||||
" prediction = predict_probs(left_words[len(left_words) - 2], left_words[len(left_words) - 1], right_words[0])\n",
|
" prediction = predict_probs(left_words[len(left_words) - 1], right_words[0])\n",
|
||||||
" file.write(prediction + '\\n')"
|
" file.write(prediction + '\\n')"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
24
run.py
24
run.py
@ -73,7 +73,7 @@ get_ipython().system('rm model/model.arpa')
|
|||||||
|
|
||||||
# ### Predykcje
|
# ### Predykcje
|
||||||
|
|
||||||
# In[32]:
|
# In[1]:
|
||||||
|
|
||||||
|
|
||||||
import kenlm
|
import kenlm
|
||||||
@ -85,13 +85,13 @@ from nltk import word_tokenize
|
|||||||
from english_words import english_words_alpha_set
|
from english_words import english_words_alpha_set
|
||||||
|
|
||||||
|
|
||||||
# In[4]:
|
# In[2]:
|
||||||
|
|
||||||
|
|
||||||
model = kenlm.Model('model/model.binary')
|
model = kenlm.Model('model/model.binary')
|
||||||
|
|
||||||
|
|
||||||
# In[28]:
|
# In[3]:
|
||||||
|
|
||||||
|
|
||||||
def clean_text(text):
|
def clean_text(text):
|
||||||
@ -101,15 +101,15 @@ def clean_text(text):
|
|||||||
return text
|
return text
|
||||||
|
|
||||||
|
|
||||||
# In[29]:
|
# In[4]:
|
||||||
|
|
||||||
|
|
||||||
def predict_probs(w1, w2, w4):
|
def predict_probs(w1, w3):
|
||||||
best_scores = []
|
best_scores = []
|
||||||
for word in english_words_alpha_set:
|
for word in english_words_alpha_set:
|
||||||
text = ' '.join([w1, w2, word, w4])
|
text = ' '.join([w1, word, w3])
|
||||||
text_score = model.score(text, bos=False, eos=False)
|
text_score = model.score(text, bos=False, eos=False)
|
||||||
if len(best_scores) < 20:
|
if len(best_scores) < 12:
|
||||||
best_scores.append((word, text_score))
|
best_scores.append((word, text_score))
|
||||||
else:
|
else:
|
||||||
is_better = False
|
is_better = False
|
||||||
@ -131,14 +131,14 @@ def predict_probs(w1, w2, w4):
|
|||||||
return pred_str
|
return pred_str
|
||||||
|
|
||||||
|
|
||||||
# In[30]:
|
# In[5]:
|
||||||
|
|
||||||
|
|
||||||
dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
||||||
test_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
test_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
||||||
|
|
||||||
|
|
||||||
# In[35]:
|
# In[7]:
|
||||||
|
|
||||||
|
|
||||||
with open('dev-0/out.tsv', 'w') as file:
|
with open('dev-0/out.tsv', 'w') as file:
|
||||||
@ -150,11 +150,11 @@ with open('dev-0/out.tsv', 'w') as file:
|
|||||||
if len(left_words) < 2 or len(right_words) < 2:
|
if len(left_words) < 2 or len(right_words) < 2:
|
||||||
prediction = ':1.0'
|
prediction = ':1.0'
|
||||||
else:
|
else:
|
||||||
prediction = predict_probs(left_words[len(left_words) - 2], left_words[len(left_words) - 1], right_words[0])
|
prediction = predict_probs(left_words[len(left_words) - 1], right_words[0])
|
||||||
file.write(prediction + '\n')
|
file.write(prediction + '\n')
|
||||||
|
|
||||||
|
|
||||||
# In[37]:
|
# In[8]:
|
||||||
|
|
||||||
|
|
||||||
with open('test-A/out.tsv', 'w') as file:
|
with open('test-A/out.tsv', 'w') as file:
|
||||||
@ -166,6 +166,6 @@ with open('test-A/out.tsv', 'w') as file:
|
|||||||
if len(left_words) < 2 or len(right_words) < 2:
|
if len(left_words) < 2 or len(right_words) < 2:
|
||||||
prediction = ':1.0'
|
prediction = ':1.0'
|
||||||
else:
|
else:
|
||||||
prediction = predict_probs(left_words[len(left_words) - 2], left_words[len(left_words) - 1], right_words[0])
|
prediction = predict_probs(left_words[len(left_words) - 1], right_words[0])
|
||||||
file.write(prediction + '\n')
|
file.write(prediction + '\n')
|
||||||
|
|
||||||
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user