init solution

This commit is contained in:
Łukasz Jędyk 2022-04-11 11:05:46 +02:00
parent 2c27ab71da
commit 3dd8f4130a
14 changed files with 443059 additions and 1 deletions

View File

@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,238 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "f73a28ea",
"metadata": {},
"outputs": [],
"source": [
"KENLM_BUILD_PATH='/home/students/s434708/kenlm/build'"
]
},
{
"cell_type": "markdown",
"id": "9fc5cda3",
"metadata": {},
"source": [
"### Preprocessing danych"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d42ddd87",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import csv\n",
"import regex as re"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f84be210",
"metadata": {},
"outputs": [],
"source": [
"def clean_text(text):\n",
" text = text.lower().replace('-\\\\n', '').replace('\\\\n', ' ')\n",
" text = re.sub(r'\\p{P}', '', text)\n",
"\n",
" return text"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de0c12d6",
"metadata": {},
"outputs": [],
"source": [
"train_data = pd.read_csv('train/in.tsv.xz', sep='\\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)\n",
"train_labels = pd.read_csv('train/expected.tsv', sep='\\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)\n",
"\n",
"train_data = train_data[[6, 7]]\n",
"train_data = pd.concat([train_data, train_labels], axis=1)\n",
"\n",
"train_data['text'] = train_data[6] + train_data[0] + train_data[7]\n",
"train_data = train_data[['text']]\n",
"\n",
"with open('processed_train.txt', 'w') as file:\n",
" for _, row in train_data.iterrows():\n",
" text = clean_text(str(row['text']))\n",
" file.write(text + '\\n')"
]
},
{
"cell_type": "markdown",
"id": "846b6b42",
"metadata": {},
"source": [
"### Model kenLM"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3c74d4be",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"=== 1/5 Counting and sorting n-grams ===\n",
"Reading /home/students/s434708/Desktop/Modelowanie Języka/challenging-america-word-gap-prediction-kenlm/processed_train.txt\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"********************************Warning: <s> appears in the input. All instances of <s>, </s>, and <unk> will be interpreted as whitespace.\n",
"********************************************************************\n",
"Unigram tokens 135911223 types 4381594\n",
"=== 2/5 Calculating and sorting adjusted counts ===\n",
"Chain sizes: 1:52579128 2:1295655936 3:2429355008 4:3886967808 5:5668495360\n",
"Statistics:\n",
"1 4381594 D1=0.841838 D2=1.01787 D3+=1.21057\n",
"2 26800631 D1=0.836734 D2=1.01657 D3+=1.19437\n",
"3 69811700 D1=0.878562 D2=1.11227 D3+=1.27889\n",
"4 104063034 D1=0.931257 D2=1.23707 D3+=1.36664\n",
"5 119487533 D1=0.938146 D2=1.3058 D3+=1.41614\n",
"Memory estimate for binary LM:\n",
"type MB\n",
"probing 6752 assuming -p 1.5\n",
"probing 7917 assuming -r models -p 1.5\n",
"trie 3572 without quantization\n",
"trie 2120 assuming -q 8 -b 8 quantization \n",
"trie 3104 assuming -a 22 array pointer compression\n",
"trie 1652 assuming -a 22 -q 8 -b 8 array pointer compression and quantization\n",
"=== 3/5 Calculating and sorting initial probabilities ===\n",
"Chain sizes: 1:52579128 2:428810096 3:1396234000 4:2497512816 5:3345650924\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"####################################################################################################\n",
"=== 4/5 Calculating and writing order-interpolated probabilities ===\n",
"Chain sizes: 1:52579128 2:428810096 3:1396234000 4:2497512816 5:3345650924\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"####################################################################################################\n",
"=== 5/5 Writing ARPA model ===\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"----------------------------------------------------------------------------------------------------Last input should have been poison. The program should end soon with an error. If it doesn't, there's a bug.\n",
"terminate called after throwing an instance of 'util::FDException'\n",
" what(): /home/students/s434708/kenlm/util/file.cc:228 in void util::WriteOrThrow(int, const void*, std::size_t) threw FDException because `ret < 1'.\n",
"No space left on device in /home/students/s434708/Desktop/Modelowanie Języka/challenging-america-word-gap-prediction-kenlm/model.arpa while writing 8189 bytes\n",
"/bin/bash: line 1: 26725 Aborted /home/students/s434708/kenlm/build/bin/lmplz -o 5 --skip_symbols < processed_train.txt > model.arpa\n"
]
}
],
"source": [
"!$KENLM_BUILD_PATH/bin/lmplz -o 5 --skip_symbols < processed_train.txt > model.arpa"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "dc65780b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reading model.arpa\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"****************************************************************************************************\n",
"/home/students/s434708/kenlm/util/file.cc:86 in int util::CreateOrThrow(const char*) threw ErrnoException because `-1 == (ret = open(name, 0100 | 01000 | 02, 0400 | 0200 | (0400 >> 3) | ((0400 >> 3) >> 3)))'.\n",
"No space left on device while creating model.binary Byte: 94\n",
"ERROR\n"
]
}
],
"source": [
"!$KENLM_BUILD_PATH/bin/build_binary model.arpa model.binary"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2087eb80",
"metadata": {},
"outputs": [],
"source": [
"!rm processed_train.txt"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4ba1e592",
"metadata": {},
"outputs": [],
"source": [
"!rm model.arpa"
]
},
{
"cell_type": "markdown",
"id": "e41f7951",
"metadata": {},
"source": [
"### Predykcje"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6865301b",
"metadata": {},
"outputs": [],
"source": [
"import kenlm"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e32de662",
"metadata": {},
"outputs": [],
"source": [
"test_str = 'really good'\n",
"\n",
"model = kenlm.Model('model.binary')\n",
"print(model.score(test_str, bos = True, eos = True))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a18b6ebd",
"metadata": {},
"outputs": [],
"source": [
"for i in model.full_scores(test_str):\n",
" print(i)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,2 +1,9 @@
# challenging-america-word-gap-prediction-kenlm Challenging America word-gap prediction - s434708
===================================
Guess a word in a gap.
Evaluation metric
-----------------
LikelihoodHashed is the metric

1
config.txt Normal file
View File

@ -0,0 +1 @@
--metric PerplexityHashed --precision 2 --in-header in-header.tsv --out-header out-header.tsv

10519
dev-0/expected.tsv Normal file

File diff suppressed because it is too large Load Diff

BIN
dev-0/in.tsv.xz Normal file

Binary file not shown.

BIN
geval Normal file

Binary file not shown.

1
in-header.tsv Normal file
View File

@ -0,0 +1 @@
FileId Year LeftContext RightContext
1 FileId Year LeftContext RightContext

1
out-header.tsv Normal file
View File

@ -0,0 +1 @@
Word
1 Word

25
process_test.py Normal file
View File

@ -0,0 +1,25 @@
import pandas as pd
import csv
import regex as re
def clean_text(text):
text = text.lower().replace('-\\n', '').replace('\\n', ' ')
text = re.sub(r'\p{P}', '', text)
return text
train_data = pd.read_csv('train/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
train_labels = pd.read_csv('train/expected.tsv', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
train_data = train_data[[6, 7]]
train_data = pd.concat([train_data, train_labels], axis=1)
train_data['text'] = train_data[6] + train_data[0] + train_data[7]
train_data = train_data[['text']]
with open('processed_train.txt', 'w') as file:
for _, row in train_data.iterrows():
text = clean_text(str(row['text']))
file.write(text + '\n')

238
run.ipynb Normal file
View File

@ -0,0 +1,238 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "f73a28ea",
"metadata": {},
"outputs": [],
"source": [
"KENLM_BUILD_PATH='/home/students/s434708/kenlm/build'"
]
},
{
"cell_type": "markdown",
"id": "9fc5cda3",
"metadata": {},
"source": [
"### Preprocessing danych"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d42ddd87",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import csv\n",
"import regex as re"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f84be210",
"metadata": {},
"outputs": [],
"source": [
"def clean_text(text):\n",
" text = text.lower().replace('-\\\\n', '').replace('\\\\n', ' ')\n",
" text = re.sub(r'\\p{P}', '', text)\n",
"\n",
" return text"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de0c12d6",
"metadata": {},
"outputs": [],
"source": [
"train_data = pd.read_csv('train/in.tsv.xz', sep='\\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)\n",
"train_labels = pd.read_csv('train/expected.tsv', sep='\\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)\n",
"\n",
"train_data = train_data[[6, 7]]\n",
"train_data = pd.concat([train_data, train_labels], axis=1)\n",
"\n",
"train_data['text'] = train_data[6] + train_data[0] + train_data[7]\n",
"train_data = train_data[['text']]\n",
"\n",
"with open('processed_train.txt', 'w') as file:\n",
" for _, row in train_data.iterrows():\n",
" text = clean_text(str(row['text']))\n",
" file.write(text + '\\n')"
]
},
{
"cell_type": "markdown",
"id": "846b6b42",
"metadata": {},
"source": [
"### Model kenLM"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3c74d4be",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"=== 1/5 Counting and sorting n-grams ===\n",
"Reading /home/students/s434708/Desktop/Modelowanie Języka/challenging-america-word-gap-prediction-kenlm/processed_train.txt\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"********************************Warning: <s> appears in the input. All instances of <s>, </s>, and <unk> will be interpreted as whitespace.\n",
"********************************************************************\n",
"Unigram tokens 135911223 types 4381594\n",
"=== 2/5 Calculating and sorting adjusted counts ===\n",
"Chain sizes: 1:52579128 2:1295655936 3:2429355008 4:3886967808 5:5668495360\n",
"Statistics:\n",
"1 4381594 D1=0.841838 D2=1.01787 D3+=1.21057\n",
"2 26800631 D1=0.836734 D2=1.01657 D3+=1.19437\n",
"3 69811700 D1=0.878562 D2=1.11227 D3+=1.27889\n",
"4 104063034 D1=0.931257 D2=1.23707 D3+=1.36664\n",
"5 119487533 D1=0.938146 D2=1.3058 D3+=1.41614\n",
"Memory estimate for binary LM:\n",
"type MB\n",
"probing 6752 assuming -p 1.5\n",
"probing 7917 assuming -r models -p 1.5\n",
"trie 3572 without quantization\n",
"trie 2120 assuming -q 8 -b 8 quantization \n",
"trie 3104 assuming -a 22 array pointer compression\n",
"trie 1652 assuming -a 22 -q 8 -b 8 array pointer compression and quantization\n",
"=== 3/5 Calculating and sorting initial probabilities ===\n",
"Chain sizes: 1:52579128 2:428810096 3:1396234000 4:2497512816 5:3345650924\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"####################################################################################################\n",
"=== 4/5 Calculating and writing order-interpolated probabilities ===\n",
"Chain sizes: 1:52579128 2:428810096 3:1396234000 4:2497512816 5:3345650924\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"####################################################################################################\n",
"=== 5/5 Writing ARPA model ===\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"----------------------------------------------------------------------------------------------------Last input should have been poison. The program should end soon with an error. If it doesn't, there's a bug.\n",
"terminate called after throwing an instance of 'util::FDException'\n",
" what(): /home/students/s434708/kenlm/util/file.cc:228 in void util::WriteOrThrow(int, const void*, std::size_t) threw FDException because `ret < 1'.\n",
"No space left on device in /home/students/s434708/Desktop/Modelowanie Języka/challenging-america-word-gap-prediction-kenlm/model.arpa while writing 8189 bytes\n",
"/bin/bash: line 1: 26725 Aborted /home/students/s434708/kenlm/build/bin/lmplz -o 5 --skip_symbols < processed_train.txt > model.arpa\n"
]
}
],
"source": [
"!$KENLM_BUILD_PATH/bin/lmplz -o 5 --skip_symbols < processed_train.txt > model.arpa"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "dc65780b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reading model.arpa\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"****************************************************************************************************\n",
"/home/students/s434708/kenlm/util/file.cc:86 in int util::CreateOrThrow(const char*) threw ErrnoException because `-1 == (ret = open(name, 0100 | 01000 | 02, 0400 | 0200 | (0400 >> 3) | ((0400 >> 3) >> 3)))'.\n",
"No space left on device while creating model.binary Byte: 94\n",
"ERROR\n"
]
}
],
"source": [
"!$KENLM_BUILD_PATH/bin/build_binary model.arpa model.binary"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2087eb80",
"metadata": {},
"outputs": [],
"source": [
"!rm processed_train.txt"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4ba1e592",
"metadata": {},
"outputs": [],
"source": [
"!rm model.arpa"
]
},
{
"cell_type": "markdown",
"id": "e41f7951",
"metadata": {},
"source": [
"### Predykcje"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6865301b",
"metadata": {},
"outputs": [],
"source": [
"import kenlm"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e32de662",
"metadata": {},
"outputs": [],
"source": [
"test_str = 'really good'\n",
"\n",
"model = kenlm.Model('model.binary')\n",
"print(model.score(test_str, bos = True, eos = True))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a18b6ebd",
"metadata": {},
"outputs": [],
"source": [
"for i in model.full_scores(test_str):\n",
" print(i)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

BIN
test-A/in.tsv.xz Normal file

Binary file not shown.

432022
train/expected.tsv Normal file

File diff suppressed because it is too large Load Diff

BIN
train/in.tsv.xz Normal file

Binary file not shown.