challenging-america-word-ga.../run.py

84 lines
2.7 KiB
Python
Raw Normal View History

2022-04-01 11:43:28 +02:00
import pandas as pd
2022-04-02 15:26:18 +02:00
import csv
2022-04-02 17:35:49 +02:00
import regex as re
2022-04-01 11:43:28 +02:00
from nltk import trigrams, word_tokenize
from collections import Counter, defaultdict
2022-04-02 17:35:49 +02:00
def clean_text(text):
text = text.lower().replace('-\\n', '').replace('\\n', ' ')
text = re.sub(r'\p{P}', '', text)
return text
2022-04-02 15:26:18 +02:00
train_data = pd.read_csv('train/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
train_labels = pd.read_csv('train/expected.tsv', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
2022-04-01 11:43:28 +02:00
train_data = train_data[[6, 7]]
train_data = pd.concat([train_data, train_labels], axis=1)
train_data['final'] = train_data[6] + train_data[0] + train_data[7]
model = defaultdict(lambda: defaultdict(lambda: 0))
for index, row in train_data.iterrows():
2022-04-02 17:35:49 +02:00
text = clean_text(str(row['final']))
2022-04-01 11:43:28 +02:00
words = word_tokenize(text)
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
2022-04-02 17:35:49 +02:00
if w1 and w2 and w3:
model[(w2, w3)][w1] += 1
if index > 20000:
2022-04-02 17:05:56 +02:00
break
2022-04-01 11:43:28 +02:00
for w2_w3 in model:
total_count = float(sum(model[w2_w3].values()))
for w1 in model[w2_w3]:
model[w2_w3][w1] /= total_count
def predict_probs(word1, word2):
raw_prediction = dict(model[word1, word2])
2022-04-02 17:05:56 +02:00
prediction = dict(Counter(raw_prediction).most_common(12))
2022-04-01 11:43:28 +02:00
total_prob = 0.0
str_prediction = ''
for word, prob in prediction.items():
total_prob += prob
str_prediction += f'{word}:{prob} '
2022-04-02 17:35:49 +02:00
if total_prob == 0.0:
return 'the:0.3 be:0.2 to:0.2 of:0.2 :0.1'
2022-04-01 11:43:28 +02:00
remaining_prob = 1 - total_prob
2022-04-02 17:05:56 +02:00
if remaining_prob < 0.0001:
remaining_prob = 0.0001
2022-04-01 11:43:28 +02:00
2022-04-02 17:05:56 +02:00
str_prediction += f':{remaining_prob}'
2022-04-01 11:43:28 +02:00
return str_prediction
2022-04-02 17:35:49 +02:00
2022-04-02 15:26:18 +02:00
dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
test_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
2022-04-01 11:43:28 +02:00
with open('dev-0/out.tsv', 'w') as file:
for index, row in dev_data.iterrows():
2022-04-02 17:35:49 +02:00
text = clean_text(str(row[7]))
2022-04-01 11:43:28 +02:00
words = word_tokenize(text)
if len(words) < 4:
2022-04-02 17:35:49 +02:00
prediction = 'the:0.3 be:0.2 to:0.2 of:0.2 :0.1'
2022-04-01 11:43:28 +02:00
else:
prediction = predict_probs(words[0], words[1])
file.write(prediction + '\n')
with open('test-A/out.tsv', 'w') as file:
for index, row in test_data.iterrows():
2022-04-02 17:35:49 +02:00
text = clean_text(str(row[7]))
2022-04-01 11:43:28 +02:00
words = word_tokenize(text)
if len(words) < 4:
2022-04-02 17:35:49 +02:00
prediction = 'the:0.3 be:0.2 to:0.2 of:0.2 :0.1'
2022-04-01 11:43:28 +02:00
else:
prediction = predict_probs(words[0], words[1])
file.write(prediction + '\n')