v2 20000 rows top 12
This commit is contained in:
parent
20f3c70aea
commit
e15e94a20c
20788
dev-0/out.tsv
20788
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
33
run.py
33
run.py
@ -1,8 +1,16 @@
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import csv
|
import csv
|
||||||
|
import regex as re
|
||||||
from nltk import trigrams, word_tokenize
|
from nltk import trigrams, word_tokenize
|
||||||
from collections import Counter, defaultdict
|
from collections import Counter, defaultdict
|
||||||
|
|
||||||
|
def clean_text(text):
|
||||||
|
text = text.lower().replace('-\\n', '').replace('\\n', ' ')
|
||||||
|
text = re.sub(r'\p{P}', '', text)
|
||||||
|
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
train_data = pd.read_csv('train/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
train_data = pd.read_csv('train/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
||||||
train_labels = pd.read_csv('train/expected.tsv', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
train_labels = pd.read_csv('train/expected.tsv', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
||||||
|
|
||||||
@ -14,13 +22,12 @@ train_data['final'] = train_data[6] + train_data[0] + train_data[7]
|
|||||||
model = defaultdict(lambda: defaultdict(lambda: 0))
|
model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
|
|
||||||
for index, row in train_data.iterrows():
|
for index, row in train_data.iterrows():
|
||||||
text = str(row['final']).lower()
|
text = clean_text(str(row['final']))
|
||||||
text = text.replace('-\\n', '')
|
|
||||||
text = text.replace('\\n', ' ')
|
|
||||||
words = word_tokenize(text)
|
words = word_tokenize(text)
|
||||||
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
|
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
|
||||||
model[(w2, w3)][w1] += 1
|
if w1 and w2 and w3:
|
||||||
if index > 10000:
|
model[(w2, w3)][w1] += 1
|
||||||
|
if index > 20000:
|
||||||
break
|
break
|
||||||
|
|
||||||
for w2_w3 in model:
|
for w2_w3 in model:
|
||||||
@ -39,6 +46,9 @@ def predict_probs(word1, word2):
|
|||||||
total_prob += prob
|
total_prob += prob
|
||||||
str_prediction += f'{word}:{prob} '
|
str_prediction += f'{word}:{prob} '
|
||||||
|
|
||||||
|
if total_prob == 0.0:
|
||||||
|
return 'the:0.3 be:0.2 to:0.2 of:0.2 :0.1'
|
||||||
|
|
||||||
remaining_prob = 1 - total_prob
|
remaining_prob = 1 - total_prob
|
||||||
|
|
||||||
if remaining_prob < 0.0001:
|
if remaining_prob < 0.0001:
|
||||||
@ -48,29 +58,26 @@ def predict_probs(word1, word2):
|
|||||||
|
|
||||||
return str_prediction
|
return str_prediction
|
||||||
|
|
||||||
|
|
||||||
dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
||||||
test_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
test_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
||||||
|
|
||||||
with open('dev-0/out.tsv', 'w') as file:
|
with open('dev-0/out.tsv', 'w') as file:
|
||||||
for index, row in dev_data.iterrows():
|
for index, row in dev_data.iterrows():
|
||||||
text = str(row[7]).lower()
|
text = clean_text(str(row[7]))
|
||||||
text = text.replace('-\\n', '')
|
|
||||||
text = text.replace('\\n', ' ')
|
|
||||||
words = word_tokenize(text)
|
words = word_tokenize(text)
|
||||||
if len(words) < 4:
|
if len(words) < 4:
|
||||||
prediction = 'and:0.01 :0.99'
|
prediction = 'the:0.3 be:0.2 to:0.2 of:0.2 :0.1'
|
||||||
else:
|
else:
|
||||||
prediction = predict_probs(words[0], words[1])
|
prediction = predict_probs(words[0], words[1])
|
||||||
file.write(prediction + '\n')
|
file.write(prediction + '\n')
|
||||||
|
|
||||||
with open('test-A/out.tsv', 'w') as file:
|
with open('test-A/out.tsv', 'w') as file:
|
||||||
for index, row in test_data.iterrows():
|
for index, row in test_data.iterrows():
|
||||||
text = str(row[7]).lower()
|
text = clean_text(str(row[7]))
|
||||||
text = text.replace('-\\n', '')
|
|
||||||
text = text.replace('\\n', ' ')
|
|
||||||
words = word_tokenize(text)
|
words = word_tokenize(text)
|
||||||
if len(words) < 4:
|
if len(words) < 4:
|
||||||
prediction = 'and:0.01 :0.99'
|
prediction = 'the:0.3 be:0.2 to:0.2 of:0.2 :0.1'
|
||||||
else:
|
else:
|
||||||
prediction = predict_probs(words[0], words[1])
|
prediction = predict_probs(words[0], words[1])
|
||||||
file.write(prediction + '\n')
|
file.write(prediction + '\n')
|
||||||
|
14702
test-A/out.tsv
14702
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user