import pandas as pd import csv import regex as re from nltk import trigrams, word_tokenize from collections import Counter, defaultdict def clean_text(text): text = text.lower().replace('-\\n', '').replace('\\n', ' ') text = re.sub(r'\p{P}', '', text) return text train_data = pd.read_csv('train/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE) train_labels = pd.read_csv('train/expected.tsv', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE) train_data = train_data[[6, 7]] train_data = pd.concat([train_data, train_labels], axis=1) train_data['final'] = train_data[6] + train_data[0] + train_data[7] model = defaultdict(lambda: defaultdict(lambda: 0)) for index, row in train_data.iterrows(): text = clean_text(str(row['final'])) words = word_tokenize(text) for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True): if w1 and w2 and w3: model[(w2, w3)][w1] += 1 if index > 20000: break for w2_w3 in model: total_count = float(sum(model[w2_w3].values())) for w1 in model[w2_w3]: model[w2_w3][w1] /= total_count def predict_probs(word1, word2): raw_prediction = dict(model[word1, word2]) prediction = dict(Counter(raw_prediction).most_common(12)) total_prob = 0.0 str_prediction = '' for word, prob in prediction.items(): total_prob += prob str_prediction += f'{word}:{prob} ' if total_prob == 0.0: return 'the:0.3 be:0.2 to:0.2 of:0.2 :0.1' remaining_prob = 1 - total_prob if remaining_prob < 0.0001: remaining_prob = 0.0001 str_prediction += f':{remaining_prob}' return str_prediction dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE) test_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE) with open('dev-0/out.tsv', 'w') as file: for index, row in dev_data.iterrows(): text = clean_text(str(row[7])) words = word_tokenize(text) if len(words) < 4: prediction = 'the:0.3 be:0.2 to:0.2 of:0.2 :0.1' else: prediction = predict_probs(words[0], words[1]) file.write(prediction + '\n') with open('test-A/out.tsv', 'w') as file: for index, row in test_data.iterrows(): text = clean_text(str(row[7])) words = word_tokenize(text) if len(words) < 4: prediction = 'the:0.3 be:0.2 to:0.2 of:0.2 :0.1' else: prediction = predict_probs(words[0], words[1]) file.write(prediction + '\n')