en-ner-conll-2003/main.py
2021-06-08 10:48:10 +02:00

135 lines
4.2 KiB
Python

import pandas as pd
import numpy as np
import csv
import torch
from tqdm import tqdm
from itertools import islice
from nltk.tokenize import word_tokenize
import gensim.downloader
class NeuralNetwork(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetwork, self).__init__()
self.l1 = torch.nn.Linear(input_size, hidden_size)
self.l2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, x):
x = self.l1(x)
x = torch.relu(x)
x = self.l2(x)
x = torch.log_softmax(x, dim=1)
return x
print("Loading word embeddings...")
word2vec = gensim.downloader.load('word2vec-google-news-300')
WORD_FEATURES_LEN = word2vec.vector_size
LABEL = {'O': 0, 'B-LOC': 1, 'I-LOC': 2, 'B-MISC': 3, 'I-MISC': 4, 'B-ORG': 5, 'I-ORG': 6, 'B-PER': 7, 'I-PER': 8}
NUM_LABELS = len(LABEL)
PUNCTUATION = {',', '<', '/', '>', '%', '$', '#', '@', '^', '*', '(', ')', '[', ']', '{', '}', ':'}
OUT_OF_VOCABULARY = np.ones(WORD_FEATURES_LEN)
X_train = []
y_train = []
X_dev = []
X_test = []
def map_number_to_label(number):
return list(LABEL.keys())[list(LABEL.values()).index(number)]
def vectorize(word):
extra_features = [word[0].isupper(), word[0].isdigit(), len(word) == 1, word[0] in PUNCTUATION]
word = word.lower()
if word in word2vec:
vec = word2vec[word]
else:
vec = OUT_OF_VOCABULARY
vec = vec.reshape(-1,1)
extra_features = np.array(extra_features).reshape(-1, 1)
return np.concatenate((vec, extra_features), axis=0)
def prediction_to_string(prediction):
output = prediction.tolist()
output = [map_number_to_label(x) for x in output]
return ' '.join(output)
train_set = pd.read_table('train/train.tsv.xz', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
dev_set = pd.read_table('dev-0/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
test_set = pd.read_table('test-A/in.tsv', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
for index, row in tqdm(train_set.iterrows(), desc="Loading train data", total=train_set.shape[0]):
labels, words = row[0], row[1]
words, labels = words.split(), labels.split()
for word in words:
X_train.append(vectorize(word))
for label in labels:
y_train.append(LABEL[label])
for index, row in tqdm(dev_set.iterrows(), desc="Loading dev data", total=dev_set.shape[0]):
words = row[0]
words = words.split()
words = [vectorize(word) for word in words]
X_dev.append(words)
for index, row in tqdm(test_set.iterrows(), desc="Loading test data", total=test_set.shape[0]):
words = row[0]
words = words.split()
words = [vectorize(word) for word in words]
X_test.append(words)
model = NeuralNetwork(304, 600, NUM_LABELS)
criterion = torch.nn.NLLLoss()
optimizer = torch.optim.Adam(model.parameters())
batch_size = 64
print("Training model...")
for epoch in range(1):
model.train()
for i in range(0, len(y_train), batch_size):
X = X_train[i:i+batch_size]
X = np.array(X).reshape(len(X), 304)
X = torch.tensor(X)
y = y_train[i:i+batch_size]
y = np.array(y)
y = torch.tensor(y)
outputs = model(X.float())
loss = criterion(outputs, y.long())
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("Making predictions...")
dev_prediction = []
test_prediction = []
model.eval()
with torch.no_grad():
for i in range(0, len(X_dev)):
X = X_dev[i]
X = np.array(X).reshape(len(X), 304)
X = torch.tensor(X)
output = model(X.float())
prediction = torch.argmax(output, dim=1)
dev_prediction.append(prediction_to_string(prediction))
for i in range(0, len(X_test)):
X = X_test[i]
X = np.array(X).reshape(len(X), 304)
X = torch.tensor(X)
output = model(X.float())
prediction = torch.argmax(output, dim=1)
test_prediction.append(prediction_to_string(prediction))
dev_prediction = np.asarray(dev_prediction)
test_prediction = np.asarray(test_prediction)
dev_prediction.tofile('./dev-0/out.tsv', sep='\n', format='%s')
test_prediction.tofile('./test-A/out.tsv', sep='\n', format='%s')