import pandas as pd import numpy as np import torch import csv from nltk.tokenize import word_tokenize from gensim.models import Word2Vec import gensim.downloader class NeuralNetwork(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetwork, self).__init__() self.l1 = torch.nn.Linear(input_size, hidden_size) self.l2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, x): x = self.l1(x) x = torch.relu(x) x = self.l2(x) x = torch.sigmoid(x) return x col_names = ['content', 'id', 'label'] print('Wczytanie danych...') # loading dataset train_set_features = pd.read_table('train/in.tsv.xz', error_bad_lines=False, quoting=csv.QUOTE_NONE, header=None, names=col_names[:2]) train_set_labels = pd.read_table('train/expected.tsv', error_bad_lines=False, quoting=csv.QUOTE_NONE, header=None, names=col_names[2:]) dev_set = pd.read_table('dev-0/in.tsv.xz', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=col_names[:2]) test_set = pd.read_table('test-A/in.tsv.xz', error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, names=col_names[:2]) print('Preprocessing danych...') # lowercase X_train = train_set_features['content'].str.lower() y_train = train_set_labels['label'] X_dev = dev_set['content'].str.lower() X_test = test_set['content'].str.lower() # tokenize X_train = [word_tokenize(content) for content in X_train] X_dev = [word_tokenize(content) for content in X_dev] X_test = [word_tokenize(content) for content in X_test] # word2vec word2vec = gensim.downloader.load('word2vec-google-news-300') X_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_train] X_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_dev] X_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in X_test] model = NeuralNetwork(300, 600, 1) criterion = torch.nn.BCELoss() optimizer = torch.optim.SGD(model.parameters(), lr = 0.01) batch_size = 10 print('Trenowanie modelu...') for epoch in range(6): model.train() for i in range(0, y_train.shape[0], batch_size): X = X_train[i:i+batch_size] X = torch.tensor(X) y = y_train[i:i+batch_size] y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1,1) outputs = model(X.float()) loss = criterion(outputs, y) optimizer.zero_grad() loss.backward() optimizer.step() print('Predykcje...') dev_prediction = [] test_prediction = [] model.eval() with torch.no_grad(): for i in range(0, len(X_dev), batch_size): X = X_dev[i:i+batch_size] X = torch.tensor(X) outputs = model(X.float()) prediction = (outputs > 0.5) dev_prediction = dev_prediction + prediction.tolist() for i in range(0, len(X_test), batch_size): X = X_test[i:i+batch_size] X = torch.tensor(X) outputs = model(X.float()) prediction = (outputs > 0.5) test_prediction = test_prediction + prediction.tolist() dev_prediction = np.asarray(dev_prediction, dtype=np.int32) test_prediction = np.asarray(test_prediction, dtype=np.int32) dev_prediction.tofile('./dev-0/out.tsv', sep='\n') test_prediction.tofile('./test-A/out.tsv', sep='\n')