2019-05-05 18:00:51 +02:00
|
|
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ==============================================================================
|
|
|
|
# NOTICE: This work was derived from tensorflow/examples/image_retraining
|
|
|
|
# and modified to use TensorFlow Hub modules.
|
|
|
|
|
2019-05-06 02:58:26 +02:00
|
|
|
# pylint: disable=line-too-long
|
|
|
|
r"""Simple transfer learning with image modules from TensorFlow Hub.
|
|
|
|
|
|
|
|
This example shows how to train an image classifier based on any
|
|
|
|
TensorFlow Hub module that computes image feature vectors. By default,
|
|
|
|
it uses the feature vectors computed by Inception V3 trained on ImageNet.
|
|
|
|
For more options, search https://tfhub.dev for image feature vector modules.
|
|
|
|
|
|
|
|
The top layer receives as input a 2048-dimensional vector (assuming
|
|
|
|
Inception V3) for each image. We train a softmax layer on top of this
|
|
|
|
representation. If the softmax layer contains N labels, this corresponds
|
|
|
|
to learning N + 2048*N model parameters for the biases and weights.
|
|
|
|
|
|
|
|
Here's an example, which assumes you have a folder containing class-named
|
|
|
|
subfolders, each full of images for each label. The example folder flower_photos
|
|
|
|
should have a structure like this:
|
|
|
|
|
|
|
|
~/flower_photos/daisy/photo1.jpg
|
|
|
|
~/flower_photos/daisy/photo2.jpg
|
|
|
|
...
|
|
|
|
~/flower_photos/rose/anotherphoto77.jpg
|
|
|
|
...
|
|
|
|
~/flower_photos/sunflower/somepicture.jpg
|
|
|
|
|
|
|
|
The subfolder names are important, since they define what label is applied to
|
|
|
|
each image, but the filenames themselves don't matter. (For a working example,
|
|
|
|
download http://download.tensorflow.org/example_images/flower_photos.tgz
|
|
|
|
and run tar xzf flower_photos.tgz to unpack it.)
|
|
|
|
|
|
|
|
Once your images are prepared, and you have pip-installed tensorflow-hub and
|
|
|
|
a sufficiently recent version of tensorflow, you can run the training with a
|
|
|
|
command like this:
|
|
|
|
|
|
|
|
```bash
|
|
|
|
python retrain.py --image_dir ~/flower_photos
|
|
|
|
```
|
|
|
|
|
|
|
|
You can replace the image_dir argument with any folder containing subfolders of
|
|
|
|
images. The label for each image is taken from the name of the subfolder it's
|
|
|
|
in.
|
|
|
|
|
|
|
|
This produces a new model file that can be loaded and run by any TensorFlow
|
|
|
|
program, for example the tensorflow/examples/label_image sample code.
|
|
|
|
|
|
|
|
By default this script will use the highly accurate, but comparatively large and
|
|
|
|
slow Inception V3 model architecture. It's recommended that you start with this
|
|
|
|
to validate that you have gathered good training data, but if you want to deploy
|
|
|
|
on resource-limited platforms, you can try the `--tfhub_module` flag with a
|
|
|
|
Mobilenet model. For more information on Mobilenet, see
|
|
|
|
https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
|
|
|
|
|
|
|
|
For example:
|
|
|
|
|
|
|
|
Run floating-point version of Mobilenet:
|
|
|
|
|
|
|
|
```bash
|
|
|
|
python retrain.py --image_dir ~/flower_photos \
|
|
|
|
--tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/feature_vector/1
|
|
|
|
```
|
|
|
|
|
|
|
|
Run Mobilenet, instrumented for quantization:
|
|
|
|
|
|
|
|
```bash
|
|
|
|
python retrain.py --image_dir ~/flower_photos/ \
|
|
|
|
--tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/quantops/feature_vector/1
|
|
|
|
```
|
|
|
|
|
|
|
|
These instrumented models can be converted to fully quantized mobile models via
|
|
|
|
TensorFlow Lite.
|
|
|
|
|
|
|
|
There are different Mobilenet models to choose from, with a variety of file
|
|
|
|
size and latency options.
|
|
|
|
- The first number can be '100', '075', '050', or '025' to control the number
|
|
|
|
of neurons (activations of hidden layers); the number of weights (and hence
|
|
|
|
to some extent the file size and speed) shrinks with the square of that
|
|
|
|
fraction.
|
|
|
|
- The second number is the input image size. You can choose '224', '192',
|
|
|
|
'160', or '128', with smaller sizes giving faster speeds.
|
|
|
|
|
|
|
|
To use with TensorBoard:
|
|
|
|
|
|
|
|
By default, this script will log summaries to /tmp/retrain_logs directory
|
|
|
|
|
|
|
|
Visualize the summaries with this command:
|
|
|
|
|
|
|
|
tensorboard --logdir /tmp/retrain_logs
|
|
|
|
|
|
|
|
To use with Tensorflow Serving, run this tool with --saved_model_dir set
|
|
|
|
to some increasingly numbered export location under the model base path, e.g.:
|
|
|
|
|
|
|
|
```bash
|
|
|
|
python retrain.py (... other args as before ...) \
|
|
|
|
--saved_model_dir=/tmp/saved_models/$(date +%s)/
|
|
|
|
tensorflow_model_server --port=9000 --model_name=my_image_classifier \
|
|
|
|
--model_base_path=/tmp/saved_models/
|
|
|
|
```
|
|
|
|
"""
|
|
|
|
# pylint: enable=line-too-long
|
|
|
|
|
2019-05-05 18:00:51 +02:00
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import collections
|
|
|
|
from datetime import datetime
|
|
|
|
import hashlib
|
|
|
|
import os.path
|
|
|
|
import random
|
|
|
|
import re
|
|
|
|
import sys
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
|
|
import tensorflow_hub as hub
|
|
|
|
|
|
|
|
FLAGS = None
|
|
|
|
|
|
|
|
MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1 # ~134M
|
|
|
|
|
|
|
|
# The location where variable checkpoints will be stored.
|
|
|
|
CHECKPOINT_NAME = '/tmp/_retrain_checkpoint'
|
|
|
|
|
|
|
|
# A module is understood as instrumented for quantization with TF-Lite
|
|
|
|
# if it contains any of these ops.
|
|
|
|
FAKE_QUANT_OPS = ('FakeQuantWithMinMaxVars',
|
|
|
|
'FakeQuantWithMinMaxVarsPerChannel')
|
|
|
|
|
|
|
|
|
|
|
|
def create_image_lists(image_dir, testing_percentage, validation_percentage):
|
|
|
|
"""Builds a list of training images from the file system.
|
|
|
|
|
|
|
|
Analyzes the sub folders in the image directory, splits them into stable
|
|
|
|
training, testing, and validation sets, and returns a data structure
|
|
|
|
describing the lists of images for each label and their paths.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image_dir: String path to a folder containing subfolders of images.
|
|
|
|
testing_percentage: Integer percentage of the images to reserve for tests.
|
|
|
|
validation_percentage: Integer percentage of images reserved for validation.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
An OrderedDict containing an entry for each label subfolder, with images
|
|
|
|
split into training, testing, and validation sets within each label.
|
|
|
|
The order of items defines the class indices.
|
|
|
|
"""
|
|
|
|
if not tf.gfile.Exists(image_dir):
|
|
|
|
tf.logging.error("Image directory '" + image_dir + "' not found.")
|
|
|
|
return None
|
|
|
|
result = collections.OrderedDict()
|
|
|
|
sub_dirs = sorted(x[0] for x in tf.gfile.Walk(image_dir))
|
|
|
|
# The root directory comes first, so skip it.
|
|
|
|
is_root_dir = True
|
|
|
|
for sub_dir in sub_dirs:
|
|
|
|
if is_root_dir:
|
|
|
|
is_root_dir = False
|
|
|
|
continue
|
|
|
|
extensions = sorted(set(os.path.normcase(ext) # Smash case on Windows.
|
|
|
|
for ext in ['JPEG', 'JPG', 'jpeg', 'jpg', 'png']))
|
|
|
|
file_list = []
|
|
|
|
dir_name = os.path.basename(
|
|
|
|
# tf.gfile.Walk() returns sub-directory with trailing '/' when it is in
|
|
|
|
# Google Cloud Storage, which confuses os.path.basename().
|
|
|
|
sub_dir[:-1] if sub_dir.endswith('/') else sub_dir)
|
|
|
|
|
|
|
|
if dir_name == image_dir:
|
|
|
|
continue
|
|
|
|
tf.logging.info("Looking for images in '" + dir_name + "'")
|
|
|
|
for extension in extensions:
|
|
|
|
file_glob = os.path.join(image_dir, dir_name, '*.' + extension)
|
|
|
|
file_list.extend(tf.gfile.Glob(file_glob))
|
|
|
|
if not file_list:
|
|
|
|
tf.logging.warning('No files found')
|
|
|
|
continue
|
|
|
|
if len(file_list) < 20:
|
|
|
|
tf.logging.warning(
|
|
|
|
'WARNING: Folder has less than 20 images, which may cause issues.')
|
|
|
|
elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS:
|
|
|
|
tf.logging.warning(
|
|
|
|
'WARNING: Folder {} has more than {} images. Some images will '
|
|
|
|
'never be selected.'.format(dir_name, MAX_NUM_IMAGES_PER_CLASS))
|
|
|
|
label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower())
|
|
|
|
training_images = []
|
|
|
|
testing_images = []
|
|
|
|
validation_images = []
|
|
|
|
for file_name in file_list:
|
|
|
|
base_name = os.path.basename(file_name)
|
|
|
|
# We want to ignore anything after '_nohash_' in the file name when
|
|
|
|
# deciding which set to put an image in, the data set creator has a way of
|
|
|
|
# grouping photos that are close variations of each other. For example
|
|
|
|
# this is used in the plant disease data set to group multiple pictures of
|
|
|
|
# the same leaf.
|
|
|
|
hash_name = re.sub(r'_nohash_.*$', '', file_name)
|
|
|
|
# This looks a bit magical, but we need to decide whether this file should
|
|
|
|
# go into the training, testing, or validation sets, and we want to keep
|
|
|
|
# existing files in the same set even if more files are subsequently
|
|
|
|
# added.
|
|
|
|
# To do that, we need a stable way of deciding based on just the file name
|
|
|
|
# itself, so we do a hash of that and then use that to generate a
|
|
|
|
# probability value that we use to assign it.
|
|
|
|
hash_name_hashed = hashlib.sha1(tf.compat.as_bytes(hash_name)).hexdigest()
|
|
|
|
percentage_hash = ((int(hash_name_hashed, 16) %
|
|
|
|
(MAX_NUM_IMAGES_PER_CLASS + 1)) *
|
|
|
|
(100.0 / MAX_NUM_IMAGES_PER_CLASS))
|
|
|
|
if percentage_hash < validation_percentage:
|
|
|
|
validation_images.append(base_name)
|
|
|
|
elif percentage_hash < (testing_percentage + validation_percentage):
|
|
|
|
testing_images.append(base_name)
|
|
|
|
else:
|
|
|
|
training_images.append(base_name)
|
|
|
|
result[label_name] = {
|
|
|
|
'dir': dir_name,
|
|
|
|
'training': training_images,
|
|
|
|
'testing': testing_images,
|
|
|
|
'validation': validation_images,
|
|
|
|
}
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
def get_image_path(image_lists, label_name, index, image_dir, category):
|
|
|
|
"""Returns a path to an image for a label at the given index.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image_lists: OrderedDict of training images for each label.
|
|
|
|
label_name: Label string we want to get an image for.
|
|
|
|
index: Int offset of the image we want. This will be moduloed by the
|
|
|
|
available number of images for the label, so it can be arbitrarily large.
|
|
|
|
image_dir: Root folder string of the subfolders containing the training
|
|
|
|
images.
|
|
|
|
category: Name string of set to pull images from - training, testing, or
|
|
|
|
validation.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
File system path string to an image that meets the requested parameters.
|
|
|
|
|
|
|
|
"""
|
|
|
|
if label_name not in image_lists:
|
|
|
|
tf.logging.fatal('Label does not exist %s.', label_name)
|
|
|
|
label_lists = image_lists[label_name]
|
|
|
|
if category not in label_lists:
|
|
|
|
tf.logging.fatal('Category does not exist %s.', category)
|
|
|
|
category_list = label_lists[category]
|
|
|
|
if not category_list:
|
|
|
|
tf.logging.fatal('Label %s has no images in the category %s.',
|
|
|
|
label_name, category)
|
|
|
|
mod_index = index % len(category_list)
|
|
|
|
base_name = category_list[mod_index]
|
|
|
|
sub_dir = label_lists['dir']
|
|
|
|
full_path = os.path.join(image_dir, sub_dir, base_name)
|
|
|
|
return full_path
|
|
|
|
|
|
|
|
|
|
|
|
def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir,
|
|
|
|
category, module_name):
|
|
|
|
"""Returns a path to a bottleneck file for a label at the given index.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image_lists: OrderedDict of training images for each label.
|
|
|
|
label_name: Label string we want to get an image for.
|
|
|
|
index: Integer offset of the image we want. This will be moduloed by the
|
|
|
|
available number of images for the label, so it can be arbitrarily large.
|
|
|
|
bottleneck_dir: Folder string holding cached files of bottleneck values.
|
|
|
|
category: Name string of set to pull images from - training, testing, or
|
|
|
|
validation.
|
|
|
|
module_name: The name of the image module being used.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
File system path string to an image that meets the requested parameters.
|
|
|
|
"""
|
|
|
|
module_name = (module_name.replace('://', '~') # URL scheme.
|
|
|
|
.replace('/', '~') # URL and Unix paths.
|
|
|
|
.replace(':', '~').replace('\\', '~')) # Windows paths.
|
|
|
|
return get_image_path(image_lists, label_name, index, bottleneck_dir,
|
|
|
|
category) + '_' + module_name + '.txt'
|
|
|
|
|
|
|
|
|
|
|
|
def create_module_graph(module_spec):
|
|
|
|
"""Creates a graph and loads Hub Module into it.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
module_spec: the hub.ModuleSpec for the image module being used.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
graph: the tf.Graph that was created.
|
|
|
|
bottleneck_tensor: the bottleneck values output by the module.
|
|
|
|
resized_input_tensor: the input images, resized as expected by the module.
|
|
|
|
wants_quantization: a boolean, whether the module has been instrumented
|
|
|
|
with fake quantization ops.
|
|
|
|
"""
|
|
|
|
height, width = hub.get_expected_image_size(module_spec)
|
|
|
|
with tf.Graph().as_default() as graph:
|
|
|
|
resized_input_tensor = tf.placeholder(tf.float32, [None, height, width, 3])
|
|
|
|
m = hub.Module(module_spec)
|
|
|
|
bottleneck_tensor = m(resized_input_tensor)
|
|
|
|
wants_quantization = any(node.op in FAKE_QUANT_OPS
|
|
|
|
for node in graph.as_graph_def().node)
|
|
|
|
return graph, bottleneck_tensor, resized_input_tensor, wants_quantization
|
|
|
|
|
|
|
|
|
|
|
|
def run_bottleneck_on_image(sess, image_data, image_data_tensor,
|
|
|
|
decoded_image_tensor, resized_input_tensor,
|
|
|
|
bottleneck_tensor):
|
|
|
|
"""Runs inference on an image to extract the 'bottleneck' summary layer.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sess: Current active TensorFlow Session.
|
|
|
|
image_data: String of raw JPEG data.
|
|
|
|
image_data_tensor: Input data layer in the graph.
|
|
|
|
decoded_image_tensor: Output of initial image resizing and preprocessing.
|
|
|
|
resized_input_tensor: The input node of the recognition graph.
|
|
|
|
bottleneck_tensor: Layer before the final softmax.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Numpy array of bottleneck values.
|
|
|
|
"""
|
|
|
|
# First decode the JPEG image, resize it, and rescale the pixel values.
|
|
|
|
resized_input_values = sess.run(decoded_image_tensor,
|
|
|
|
{image_data_tensor: image_data})
|
|
|
|
# Then run it through the recognition network.
|
|
|
|
bottleneck_values = sess.run(bottleneck_tensor,
|
|
|
|
{resized_input_tensor: resized_input_values})
|
|
|
|
bottleneck_values = np.squeeze(bottleneck_values)
|
|
|
|
return bottleneck_values
|
|
|
|
|
|
|
|
|
|
|
|
def ensure_dir_exists(dir_name):
|
|
|
|
"""Makes sure the folder exists on disk.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dir_name: Path string to the folder we want to create.
|
|
|
|
"""
|
|
|
|
if not os.path.exists(dir_name):
|
|
|
|
os.makedirs(dir_name)
|
|
|
|
|
|
|
|
|
|
|
|
def create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
|
|
|
|
image_dir, category, sess, jpeg_data_tensor,
|
|
|
|
decoded_image_tensor, resized_input_tensor,
|
|
|
|
bottleneck_tensor):
|
|
|
|
"""Create a single bottleneck file."""
|
|
|
|
tf.logging.debug('Creating bottleneck at ' + bottleneck_path)
|
|
|
|
image_path = get_image_path(image_lists, label_name, index,
|
|
|
|
image_dir, category)
|
|
|
|
if not tf.gfile.Exists(image_path):
|
|
|
|
tf.logging.fatal('File does not exist %s', image_path)
|
|
|
|
image_data = tf.gfile.GFile(image_path, 'rb').read()
|
|
|
|
try:
|
|
|
|
bottleneck_values = run_bottleneck_on_image(
|
|
|
|
sess, image_data, jpeg_data_tensor, decoded_image_tensor,
|
|
|
|
resized_input_tensor, bottleneck_tensor)
|
|
|
|
except Exception as e:
|
|
|
|
raise RuntimeError('Error during processing file %s (%s)' % (image_path,
|
|
|
|
str(e)))
|
|
|
|
bottleneck_string = ','.join(str(x) for x in bottleneck_values)
|
|
|
|
with open(bottleneck_path, 'w') as bottleneck_file:
|
|
|
|
bottleneck_file.write(bottleneck_string)
|
|
|
|
|
|
|
|
|
|
|
|
def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir,
|
|
|
|
category, bottleneck_dir, jpeg_data_tensor,
|
|
|
|
decoded_image_tensor, resized_input_tensor,
|
|
|
|
bottleneck_tensor, module_name):
|
|
|
|
"""Retrieves or calculates bottleneck values for an image.
|
|
|
|
|
|
|
|
If a cached version of the bottleneck data exists on-disk, return that,
|
|
|
|
otherwise calculate the data and save it to disk for future use.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sess: The current active TensorFlow Session.
|
|
|
|
image_lists: OrderedDict of training images for each label.
|
|
|
|
label_name: Label string we want to get an image for.
|
|
|
|
index: Integer offset of the image we want. This will be modulo-ed by the
|
|
|
|
available number of images for the label, so it can be arbitrarily large.
|
|
|
|
image_dir: Root folder string of the subfolders containing the training
|
|
|
|
images.
|
|
|
|
category: Name string of which set to pull images from - training, testing,
|
|
|
|
or validation.
|
|
|
|
bottleneck_dir: Folder string holding cached files of bottleneck values.
|
|
|
|
jpeg_data_tensor: The tensor to feed loaded jpeg data into.
|
|
|
|
decoded_image_tensor: The output of decoding and resizing the image.
|
|
|
|
resized_input_tensor: The input node of the recognition graph.
|
|
|
|
bottleneck_tensor: The output tensor for the bottleneck values.
|
|
|
|
module_name: The name of the image module being used.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Numpy array of values produced by the bottleneck layer for the image.
|
|
|
|
"""
|
|
|
|
label_lists = image_lists[label_name]
|
|
|
|
sub_dir = label_lists['dir']
|
|
|
|
sub_dir_path = os.path.join(bottleneck_dir, sub_dir)
|
|
|
|
ensure_dir_exists(sub_dir_path)
|
|
|
|
bottleneck_path = get_bottleneck_path(image_lists, label_name, index,
|
|
|
|
bottleneck_dir, category, module_name)
|
|
|
|
if not os.path.exists(bottleneck_path):
|
|
|
|
create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
|
|
|
|
image_dir, category, sess, jpeg_data_tensor,
|
|
|
|
decoded_image_tensor, resized_input_tensor,
|
|
|
|
bottleneck_tensor)
|
|
|
|
with open(bottleneck_path, 'r') as bottleneck_file:
|
|
|
|
bottleneck_string = bottleneck_file.read()
|
|
|
|
did_hit_error = False
|
|
|
|
try:
|
|
|
|
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
|
|
|
|
except ValueError:
|
|
|
|
tf.logging.warning('Invalid float found, recreating bottleneck')
|
|
|
|
did_hit_error = True
|
|
|
|
if did_hit_error:
|
|
|
|
create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
|
|
|
|
image_dir, category, sess, jpeg_data_tensor,
|
|
|
|
decoded_image_tensor, resized_input_tensor,
|
|
|
|
bottleneck_tensor)
|
|
|
|
with open(bottleneck_path, 'r') as bottleneck_file:
|
|
|
|
bottleneck_string = bottleneck_file.read()
|
|
|
|
# Allow exceptions to propagate here, since they shouldn't happen after a
|
|
|
|
# fresh creation
|
|
|
|
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
|
|
|
|
return bottleneck_values
|
|
|
|
|
|
|
|
|
|
|
|
def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir,
|
|
|
|
jpeg_data_tensor, decoded_image_tensor,
|
|
|
|
resized_input_tensor, bottleneck_tensor, module_name):
|
|
|
|
"""Ensures all the training, testing, and validation bottlenecks are cached.
|
|
|
|
|
|
|
|
Because we're likely to read the same image multiple times (if there are no
|
|
|
|
distortions applied during training) it can speed things up a lot if we
|
|
|
|
calculate the bottleneck layer values once for each image during
|
|
|
|
preprocessing, and then just read those cached values repeatedly during
|
|
|
|
training. Here we go through all the images we've found, calculate those
|
|
|
|
values, and save them off.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sess: The current active TensorFlow Session.
|
|
|
|
image_lists: OrderedDict of training images for each label.
|
|
|
|
image_dir: Root folder string of the subfolders containing the training
|
|
|
|
images.
|
|
|
|
bottleneck_dir: Folder string holding cached files of bottleneck values.
|
|
|
|
jpeg_data_tensor: Input tensor for jpeg data from file.
|
|
|
|
decoded_image_tensor: The output of decoding and resizing the image.
|
|
|
|
resized_input_tensor: The input node of the recognition graph.
|
|
|
|
bottleneck_tensor: The penultimate output layer of the graph.
|
|
|
|
module_name: The name of the image module being used.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Nothing.
|
|
|
|
"""
|
|
|
|
how_many_bottlenecks = 0
|
|
|
|
ensure_dir_exists(bottleneck_dir)
|
|
|
|
for label_name, label_lists in image_lists.items():
|
|
|
|
for category in ['training', 'testing', 'validation']:
|
|
|
|
category_list = label_lists[category]
|
|
|
|
for index, unused_base_name in enumerate(category_list):
|
|
|
|
get_or_create_bottleneck(
|
|
|
|
sess, image_lists, label_name, index, image_dir, category,
|
|
|
|
bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
|
|
|
|
resized_input_tensor, bottleneck_tensor, module_name)
|
|
|
|
|
|
|
|
how_many_bottlenecks += 1
|
|
|
|
if how_many_bottlenecks % 100 == 0:
|
|
|
|
tf.logging.info(
|
|
|
|
str(how_many_bottlenecks) + ' bottleneck files created.')
|
|
|
|
|
|
|
|
|
|
|
|
def get_random_cached_bottlenecks(sess, image_lists, how_many, category,
|
|
|
|
bottleneck_dir, image_dir, jpeg_data_tensor,
|
|
|
|
decoded_image_tensor, resized_input_tensor,
|
|
|
|
bottleneck_tensor, module_name):
|
|
|
|
"""Retrieves bottleneck values for cached images.
|
|
|
|
|
|
|
|
If no distortions are being applied, this function can retrieve the cached
|
|
|
|
bottleneck values directly from disk for images. It picks a random set of
|
|
|
|
images from the specified category.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sess: Current TensorFlow Session.
|
|
|
|
image_lists: OrderedDict of training images for each label.
|
|
|
|
how_many: If positive, a random sample of this size will be chosen.
|
|
|
|
If negative, all bottlenecks will be retrieved.
|
|
|
|
category: Name string of which set to pull from - training, testing, or
|
|
|
|
validation.
|
|
|
|
bottleneck_dir: Folder string holding cached files of bottleneck values.
|
|
|
|
image_dir: Root folder string of the subfolders containing the training
|
|
|
|
images.
|
|
|
|
jpeg_data_tensor: The layer to feed jpeg image data into.
|
|
|
|
decoded_image_tensor: The output of decoding and resizing the image.
|
|
|
|
resized_input_tensor: The input node of the recognition graph.
|
|
|
|
bottleneck_tensor: The bottleneck output layer of the CNN graph.
|
|
|
|
module_name: The name of the image module being used.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of bottleneck arrays, their corresponding ground truths, and the
|
|
|
|
relevant filenames.
|
|
|
|
"""
|
|
|
|
class_count = len(image_lists.keys())
|
|
|
|
bottlenecks = []
|
|
|
|
ground_truths = []
|
|
|
|
filenames = []
|
|
|
|
if how_many >= 0:
|
|
|
|
# Retrieve a random sample of bottlenecks.
|
|
|
|
for unused_i in range(how_many):
|
|
|
|
label_index = random.randrange(class_count)
|
|
|
|
label_name = list(image_lists.keys())[label_index]
|
|
|
|
image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
|
|
|
|
image_name = get_image_path(image_lists, label_name, image_index,
|
|
|
|
image_dir, category)
|
|
|
|
bottleneck = get_or_create_bottleneck(
|
|
|
|
sess, image_lists, label_name, image_index, image_dir, category,
|
|
|
|
bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
|
|
|
|
resized_input_tensor, bottleneck_tensor, module_name)
|
|
|
|
bottlenecks.append(bottleneck)
|
|
|
|
ground_truths.append(label_index)
|
|
|
|
filenames.append(image_name)
|
|
|
|
else:
|
|
|
|
# Retrieve all bottlenecks.
|
|
|
|
for label_index, label_name in enumerate(image_lists.keys()):
|
|
|
|
for image_index, image_name in enumerate(
|
|
|
|
image_lists[label_name][category]):
|
|
|
|
image_name = get_image_path(image_lists, label_name, image_index,
|
|
|
|
image_dir, category)
|
|
|
|
bottleneck = get_or_create_bottleneck(
|
|
|
|
sess, image_lists, label_name, image_index, image_dir, category,
|
|
|
|
bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
|
|
|
|
resized_input_tensor, bottleneck_tensor, module_name)
|
|
|
|
bottlenecks.append(bottleneck)
|
|
|
|
ground_truths.append(label_index)
|
|
|
|
filenames.append(image_name)
|
|
|
|
return bottlenecks, ground_truths, filenames
|
|
|
|
|
|
|
|
|
|
|
|
def get_random_distorted_bottlenecks(
|
|
|
|
sess, image_lists, how_many, category, image_dir, input_jpeg_tensor,
|
|
|
|
distorted_image, resized_input_tensor, bottleneck_tensor):
|
|
|
|
"""Retrieves bottleneck values for training images, after distortions.
|
|
|
|
|
|
|
|
If we're training with distortions like crops, scales, or flips, we have to
|
|
|
|
recalculate the full model for every image, and so we can't use cached
|
|
|
|
bottleneck values. Instead we find random images for the requested category,
|
|
|
|
run them through the distortion graph, and then the full graph to get the
|
|
|
|
bottleneck results for each.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sess: Current TensorFlow Session.
|
|
|
|
image_lists: OrderedDict of training images for each label.
|
|
|
|
how_many: The integer number of bottleneck values to return.
|
|
|
|
category: Name string of which set of images to fetch - training, testing,
|
|
|
|
or validation.
|
|
|
|
image_dir: Root folder string of the subfolders containing the training
|
|
|
|
images.
|
|
|
|
input_jpeg_tensor: The input layer we feed the image data to.
|
|
|
|
distorted_image: The output node of the distortion graph.
|
|
|
|
resized_input_tensor: The input node of the recognition graph.
|
|
|
|
bottleneck_tensor: The bottleneck output layer of the CNN graph.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of bottleneck arrays and their corresponding ground truths.
|
|
|
|
"""
|
|
|
|
class_count = len(image_lists.keys())
|
|
|
|
bottlenecks = []
|
|
|
|
ground_truths = []
|
|
|
|
for unused_i in range(how_many):
|
|
|
|
label_index = random.randrange(class_count)
|
|
|
|
label_name = list(image_lists.keys())[label_index]
|
|
|
|
image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
|
|
|
|
image_path = get_image_path(image_lists, label_name, image_index, image_dir,
|
|
|
|
category)
|
|
|
|
if not tf.gfile.Exists(image_path):
|
|
|
|
tf.logging.fatal('File does not exist %s', image_path)
|
|
|
|
jpeg_data = tf.gfile.GFile(image_path, 'rb').read()
|
|
|
|
# Note that we materialize the distorted_image_data as a numpy array before
|
|
|
|
# sending running inference on the image. This involves 2 memory copies and
|
|
|
|
# might be optimized in other implementations.
|
|
|
|
distorted_image_data = sess.run(distorted_image,
|
|
|
|
{input_jpeg_tensor: jpeg_data})
|
|
|
|
bottleneck_values = sess.run(bottleneck_tensor,
|
|
|
|
{resized_input_tensor: distorted_image_data})
|
|
|
|
bottleneck_values = np.squeeze(bottleneck_values)
|
|
|
|
bottlenecks.append(bottleneck_values)
|
|
|
|
ground_truths.append(label_index)
|
|
|
|
return bottlenecks, ground_truths
|
|
|
|
|
|
|
|
|
|
|
|
def should_distort_images(flip_left_right, random_crop, random_scale,
|
|
|
|
random_brightness):
|
|
|
|
"""Whether any distortions are enabled, from the input flags.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
flip_left_right: Boolean whether to randomly mirror images horizontally.
|
|
|
|
random_crop: Integer percentage setting the total margin used around the
|
|
|
|
crop box.
|
|
|
|
random_scale: Integer percentage of how much to vary the scale by.
|
|
|
|
random_brightness: Integer range to randomly multiply the pixel values by.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Boolean value indicating whether any distortions should be applied.
|
|
|
|
"""
|
|
|
|
return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
|
|
|
|
(random_brightness != 0))
|
|
|
|
|
|
|
|
|
|
|
|
def add_input_distortions(flip_left_right, random_crop, random_scale,
|
|
|
|
random_brightness, module_spec):
|
|
|
|
"""Creates the operations to apply the specified distortions.
|
|
|
|
|
|
|
|
During training it can help to improve the results if we run the images
|
|
|
|
through simple distortions like crops, scales, and flips. These reflect the
|
|
|
|
kind of variations we expect in the real world, and so can help train the
|
|
|
|
model to cope with natural data more effectively. Here we take the supplied
|
|
|
|
parameters and construct a network of operations to apply them to an image.
|
|
|
|
|
|
|
|
Cropping
|
|
|
|
~~~~~~~~
|
|
|
|
|
|
|
|
Cropping is done by placing a bounding box at a random position in the full
|
|
|
|
image. The cropping parameter controls the size of that box relative to the
|
|
|
|
input image. If it's zero, then the box is the same size as the input and no
|
|
|
|
cropping is performed. If the value is 50%, then the crop box will be half the
|
|
|
|
width and height of the input. In a diagram it looks like this:
|
|
|
|
|
|
|
|
< width >
|
|
|
|
+---------------------+
|
|
|
|
| |
|
|
|
|
| width - crop% |
|
|
|
|
| < > |
|
|
|
|
| +------+ |
|
|
|
|
| | | |
|
|
|
|
| | | |
|
|
|
|
| | | |
|
|
|
|
| +------+ |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
+---------------------+
|
|
|
|
|
|
|
|
Scaling
|
|
|
|
~~~~~~~
|
|
|
|
|
|
|
|
Scaling is a lot like cropping, except that the bounding box is always
|
|
|
|
centered and its size varies randomly within the given range. For example if
|
|
|
|
the scale percentage is zero, then the bounding box is the same size as the
|
|
|
|
input and no scaling is applied. If it's 50%, then the bounding box will be in
|
|
|
|
a random range between half the width and height and full size.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
flip_left_right: Boolean whether to randomly mirror images horizontally.
|
|
|
|
random_crop: Integer percentage setting the total margin used around the
|
|
|
|
crop box.
|
|
|
|
random_scale: Integer percentage of how much to vary the scale by.
|
|
|
|
random_brightness: Integer range to randomly multiply the pixel values by.
|
|
|
|
graph.
|
|
|
|
module_spec: The hub.ModuleSpec for the image module being used.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The jpeg input layer and the distorted result tensor.
|
|
|
|
"""
|
|
|
|
input_height, input_width = hub.get_expected_image_size(module_spec)
|
|
|
|
input_depth = hub.get_num_image_channels(module_spec)
|
|
|
|
jpeg_data = tf.placeholder(tf.string, name='DistortJPGInput')
|
|
|
|
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
|
|
|
|
# Convert from full range of uint8 to range [0,1] of float32.
|
|
|
|
decoded_image_as_float = tf.image.convert_image_dtype(decoded_image,
|
|
|
|
tf.float32)
|
|
|
|
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
|
|
|
|
margin_scale = 1.0 + (random_crop / 100.0)
|
|
|
|
resize_scale = 1.0 + (random_scale / 100.0)
|
|
|
|
margin_scale_value = tf.constant(margin_scale)
|
|
|
|
resize_scale_value = tf.random_uniform(shape=[],
|
|
|
|
minval=1.0,
|
|
|
|
maxval=resize_scale)
|
|
|
|
scale_value = tf.multiply(margin_scale_value, resize_scale_value)
|
|
|
|
precrop_width = tf.multiply(scale_value, input_width)
|
|
|
|
precrop_height = tf.multiply(scale_value, input_height)
|
|
|
|
precrop_shape = tf.stack([precrop_height, precrop_width])
|
|
|
|
precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32)
|
|
|
|
precropped_image = tf.image.resize_bilinear(decoded_image_4d,
|
|
|
|
precrop_shape_as_int)
|
|
|
|
precropped_image_3d = tf.squeeze(precropped_image, axis=[0])
|
|
|
|
cropped_image = tf.random_crop(precropped_image_3d,
|
|
|
|
[input_height, input_width, input_depth])
|
|
|
|
if flip_left_right:
|
|
|
|
flipped_image = tf.image.random_flip_left_right(cropped_image)
|
|
|
|
else:
|
|
|
|
flipped_image = cropped_image
|
|
|
|
brightness_min = 1.0 - (random_brightness / 100.0)
|
|
|
|
brightness_max = 1.0 + (random_brightness / 100.0)
|
|
|
|
brightness_value = tf.random_uniform(shape=[],
|
|
|
|
minval=brightness_min,
|
|
|
|
maxval=brightness_max)
|
|
|
|
brightened_image = tf.multiply(flipped_image, brightness_value)
|
|
|
|
distort_result = tf.expand_dims(brightened_image, 0, name='DistortResult')
|
|
|
|
return jpeg_data, distort_result
|
|
|
|
|
|
|
|
|
|
|
|
def variable_summaries(var):
|
|
|
|
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
|
|
|
|
with tf.name_scope('summaries'):
|
|
|
|
mean = tf.reduce_mean(var)
|
|
|
|
tf.summary.scalar('mean', mean)
|
|
|
|
with tf.name_scope('stddev'):
|
|
|
|
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
|
|
|
|
tf.summary.scalar('stddev', stddev)
|
|
|
|
tf.summary.scalar('max', tf.reduce_max(var))
|
|
|
|
tf.summary.scalar('min', tf.reduce_min(var))
|
|
|
|
tf.summary.histogram('histogram', var)
|
|
|
|
|
|
|
|
|
|
|
|
def add_final_retrain_ops(class_count, final_tensor_name, bottleneck_tensor,
|
|
|
|
quantize_layer, is_training):
|
|
|
|
"""Adds a new softmax and fully-connected layer for training and eval.
|
|
|
|
|
|
|
|
We need to retrain the top layer to identify our new classes, so this function
|
|
|
|
adds the right operations to the graph, along with some variables to hold the
|
|
|
|
weights, and then sets up all the gradients for the backward pass.
|
|
|
|
|
|
|
|
The set up for the softmax and fully-connected layers is based on:
|
|
|
|
https://www.tensorflow.org/tutorials/mnist/beginners/index.html
|
|
|
|
|
|
|
|
Args:
|
|
|
|
class_count: Integer of how many categories of things we're trying to
|
|
|
|
recognize.
|
|
|
|
final_tensor_name: Name string for the new final node that produces results.
|
|
|
|
bottleneck_tensor: The output of the main CNN graph.
|
|
|
|
quantize_layer: Boolean, specifying whether the newly added layer should be
|
|
|
|
instrumented for quantization with TF-Lite.
|
|
|
|
is_training: Boolean, specifying whether the newly add layer is for training
|
|
|
|
or eval.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The tensors for the training and cross entropy results, and tensors for the
|
|
|
|
bottleneck input and ground truth input.
|
|
|
|
"""
|
|
|
|
batch_size, bottleneck_tensor_size = bottleneck_tensor.get_shape().as_list()
|
|
|
|
assert batch_size is None, 'We want to work with arbitrary batch size.'
|
|
|
|
with tf.name_scope('input'):
|
|
|
|
bottleneck_input = tf.placeholder_with_default(
|
|
|
|
bottleneck_tensor,
|
|
|
|
shape=[batch_size, bottleneck_tensor_size],
|
|
|
|
name='BottleneckInputPlaceholder')
|
|
|
|
|
|
|
|
ground_truth_input = tf.placeholder(
|
|
|
|
tf.int64, [batch_size], name='GroundTruthInput')
|
|
|
|
|
|
|
|
# Organizing the following ops so they are easier to see in TensorBoard.
|
|
|
|
layer_name = 'final_retrain_ops'
|
|
|
|
with tf.name_scope(layer_name):
|
|
|
|
with tf.name_scope('weights'):
|
|
|
|
initial_value = tf.truncated_normal(
|
|
|
|
[bottleneck_tensor_size, class_count], stddev=0.001)
|
|
|
|
layer_weights = tf.Variable(initial_value, name='final_weights')
|
|
|
|
variable_summaries(layer_weights)
|
|
|
|
|
|
|
|
with tf.name_scope('biases'):
|
|
|
|
layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')
|
|
|
|
variable_summaries(layer_biases)
|
|
|
|
|
|
|
|
with tf.name_scope('Wx_plus_b'):
|
|
|
|
logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases
|
|
|
|
tf.summary.histogram('pre_activations', logits)
|
|
|
|
|
|
|
|
final_tensor = tf.nn.softmax(logits, name=final_tensor_name)
|
|
|
|
|
|
|
|
# The tf.contrib.quantize functions rewrite the graph in place for
|
|
|
|
# quantization. The imported model graph has already been rewritten, so upon
|
|
|
|
# calling these rewrites, only the newly added final layer will be
|
|
|
|
# transformed.
|
|
|
|
if quantize_layer:
|
|
|
|
if is_training:
|
|
|
|
tf.contrib.quantize.create_training_graph()
|
|
|
|
else:
|
|
|
|
tf.contrib.quantize.create_eval_graph()
|
|
|
|
|
|
|
|
tf.summary.histogram('activations', final_tensor)
|
|
|
|
|
|
|
|
# If this is an eval graph, we don't need to add loss ops or an optimizer.
|
|
|
|
if not is_training:
|
|
|
|
return None, None, bottleneck_input, ground_truth_input, final_tensor
|
|
|
|
|
|
|
|
with tf.name_scope('cross_entropy'):
|
|
|
|
cross_entropy_mean = tf.losses.sparse_softmax_cross_entropy(
|
|
|
|
labels=ground_truth_input, logits=logits)
|
|
|
|
|
|
|
|
tf.summary.scalar('cross_entropy', cross_entropy_mean)
|
|
|
|
|
|
|
|
with tf.name_scope('train'):
|
|
|
|
optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)
|
|
|
|
train_step = optimizer.minimize(cross_entropy_mean)
|
|
|
|
|
|
|
|
return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
|
|
|
|
final_tensor)
|
|
|
|
|
|
|
|
|
|
|
|
def add_evaluation_step(result_tensor, ground_truth_tensor):
|
|
|
|
"""Inserts the operations we need to evaluate the accuracy of our results.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
result_tensor: The new final node that produces results.
|
|
|
|
ground_truth_tensor: The node we feed ground truth data
|
|
|
|
into.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tuple of (evaluation step, prediction).
|
|
|
|
"""
|
|
|
|
with tf.name_scope('accuracy'):
|
|
|
|
with tf.name_scope('correct_prediction'):
|
|
|
|
prediction = tf.argmax(result_tensor, 1)
|
|
|
|
correct_prediction = tf.equal(prediction, ground_truth_tensor)
|
|
|
|
with tf.name_scope('accuracy'):
|
|
|
|
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
|
|
|
|
tf.summary.scalar('accuracy', evaluation_step)
|
|
|
|
return evaluation_step, prediction
|
|
|
|
|
|
|
|
|
|
|
|
def run_final_eval(train_session, module_spec, class_count, image_lists,
|
|
|
|
jpeg_data_tensor, decoded_image_tensor,
|
|
|
|
resized_image_tensor, bottleneck_tensor):
|
|
|
|
"""Runs a final evaluation on an eval graph using the test data set.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
train_session: Session for the train graph with the tensors below.
|
|
|
|
module_spec: The hub.ModuleSpec for the image module being used.
|
|
|
|
class_count: Number of classes
|
|
|
|
image_lists: OrderedDict of training images for each label.
|
|
|
|
jpeg_data_tensor: The layer to feed jpeg image data into.
|
|
|
|
decoded_image_tensor: The output of decoding and resizing the image.
|
|
|
|
resized_image_tensor: The input node of the recognition graph.
|
|
|
|
bottleneck_tensor: The bottleneck output layer of the CNN graph.
|
|
|
|
"""
|
|
|
|
test_bottlenecks, test_ground_truth, test_filenames = (
|
|
|
|
get_random_cached_bottlenecks(train_session, image_lists,
|
|
|
|
FLAGS.test_batch_size,
|
|
|
|
'testing', FLAGS.bottleneck_dir,
|
|
|
|
FLAGS.image_dir, jpeg_data_tensor,
|
|
|
|
decoded_image_tensor, resized_image_tensor,
|
|
|
|
bottleneck_tensor, FLAGS.tfhub_module))
|
|
|
|
|
|
|
|
(eval_session, _, bottleneck_input, ground_truth_input, evaluation_step,
|
|
|
|
prediction) = build_eval_session(module_spec, class_count)
|
|
|
|
test_accuracy, predictions = eval_session.run(
|
|
|
|
[evaluation_step, prediction],
|
|
|
|
feed_dict={
|
|
|
|
bottleneck_input: test_bottlenecks,
|
|
|
|
ground_truth_input: test_ground_truth
|
|
|
|
})
|
|
|
|
tf.logging.info('Final test accuracy = %.1f%% (N=%d)' %
|
|
|
|
(test_accuracy * 100, len(test_bottlenecks)))
|
|
|
|
|
|
|
|
if FLAGS.print_misclassified_test_images:
|
|
|
|
tf.logging.info('=== MISCLASSIFIED TEST IMAGES ===')
|
|
|
|
for i, test_filename in enumerate(test_filenames):
|
|
|
|
if predictions[i] != test_ground_truth[i]:
|
|
|
|
tf.logging.info('%70s %s' % (test_filename,
|
|
|
|
list(image_lists.keys())[predictions[i]]))
|
|
|
|
|
|
|
|
|
|
|
|
def build_eval_session(module_spec, class_count):
|
|
|
|
"""Builds an restored eval session without train operations for exporting.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
module_spec: The hub.ModuleSpec for the image module being used.
|
|
|
|
class_count: Number of classes
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Eval session containing the restored eval graph.
|
|
|
|
The bottleneck input, ground truth, eval step, and prediction tensors.
|
|
|
|
"""
|
|
|
|
# If quantized, we need to create the correct eval graph for exporting.
|
|
|
|
eval_graph, bottleneck_tensor, resized_input_tensor, wants_quantization = (
|
|
|
|
create_module_graph(module_spec))
|
|
|
|
|
|
|
|
eval_sess = tf.Session(graph=eval_graph)
|
|
|
|
with eval_graph.as_default():
|
|
|
|
# Add the new layer for exporting.
|
|
|
|
(_, _, bottleneck_input,
|
|
|
|
ground_truth_input, final_tensor) = add_final_retrain_ops(
|
|
|
|
class_count, FLAGS.final_tensor_name, bottleneck_tensor,
|
|
|
|
wants_quantization, is_training=False)
|
|
|
|
|
|
|
|
# Now we need to restore the values from the training graph to the eval
|
|
|
|
# graph.
|
|
|
|
tf.train.Saver().restore(eval_sess, CHECKPOINT_NAME)
|
|
|
|
|
|
|
|
evaluation_step, prediction = add_evaluation_step(final_tensor,
|
|
|
|
ground_truth_input)
|
|
|
|
|
|
|
|
return (eval_sess, resized_input_tensor, bottleneck_input, ground_truth_input,
|
|
|
|
evaluation_step, prediction)
|
|
|
|
|
|
|
|
|
|
|
|
def save_graph_to_file(graph_file_name, module_spec, class_count):
|
|
|
|
"""Saves an graph to file, creating a valid quantized one if necessary."""
|
|
|
|
sess, _, _, _, _, _ = build_eval_session(module_spec, class_count)
|
|
|
|
graph = sess.graph
|
|
|
|
|
|
|
|
output_graph_def = tf.graph_util.convert_variables_to_constants(
|
|
|
|
sess, graph.as_graph_def(), [FLAGS.final_tensor_name])
|
|
|
|
|
|
|
|
with tf.gfile.GFile(graph_file_name, 'wb') as f:
|
|
|
|
f.write(output_graph_def.SerializeToString())
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_file_system():
|
|
|
|
# Set up the directory we'll write summaries to for TensorBoard
|
|
|
|
if tf.gfile.Exists(FLAGS.summaries_dir):
|
|
|
|
tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
|
|
|
|
tf.gfile.MakeDirs(FLAGS.summaries_dir)
|
|
|
|
if FLAGS.intermediate_store_frequency > 0:
|
|
|
|
ensure_dir_exists(FLAGS.intermediate_output_graphs_dir)
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
def add_jpeg_decoding(module_spec):
|
|
|
|
"""Adds operations that perform JPEG decoding and resizing to the graph..
|
|
|
|
|
|
|
|
Args:
|
|
|
|
module_spec: The hub.ModuleSpec for the image module being used.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensors for the node to feed JPEG data into, and the output of the
|
|
|
|
preprocessing steps.
|
|
|
|
"""
|
|
|
|
input_height, input_width = hub.get_expected_image_size(module_spec)
|
|
|
|
input_depth = hub.get_num_image_channels(module_spec)
|
|
|
|
jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput')
|
|
|
|
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
|
|
|
|
# Convert from full range of uint8 to range [0,1] of float32.
|
|
|
|
decoded_image_as_float = tf.image.convert_image_dtype(decoded_image,
|
|
|
|
tf.float32)
|
|
|
|
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
|
|
|
|
resize_shape = tf.stack([input_height, input_width])
|
|
|
|
resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
|
|
|
|
resized_image = tf.image.resize_bilinear(decoded_image_4d,
|
|
|
|
resize_shape_as_int)
|
|
|
|
return jpeg_data, resized_image
|
|
|
|
|
|
|
|
|
|
|
|
def export_model(module_spec, class_count, saved_model_dir):
|
|
|
|
"""Exports model for serving.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
module_spec: The hub.ModuleSpec for the image module being used.
|
|
|
|
class_count: The number of classes.
|
|
|
|
saved_model_dir: Directory in which to save exported model and variables.
|
|
|
|
"""
|
|
|
|
# The SavedModel should hold the eval graph.
|
|
|
|
sess, in_image, _, _, _, _ = build_eval_session(module_spec, class_count)
|
|
|
|
with sess.graph.as_default() as graph:
|
|
|
|
tf.saved_model.simple_save(
|
|
|
|
sess,
|
|
|
|
saved_model_dir,
|
|
|
|
inputs={'image': in_image},
|
|
|
|
outputs={'prediction': graph.get_tensor_by_name('final_result:0')},
|
|
|
|
legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op')
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def logging_level_verbosity(logging_verbosity):
|
|
|
|
"""Converts logging_level into TensorFlow logging verbosity value
|
|
|
|
|
|
|
|
Args:
|
|
|
|
logging_level: String value representing logging level: 'DEBUG', 'INFO',
|
|
|
|
'WARN', 'ERROR', 'FATAL'
|
|
|
|
"""
|
|
|
|
name_to_level = {
|
|
|
|
'FATAL': tf.logging.FATAL,
|
|
|
|
'ERROR': tf.logging.ERROR,
|
|
|
|
'WARN': tf.logging.WARN,
|
|
|
|
'INFO': tf.logging.INFO,
|
|
|
|
'DEBUG': tf.logging.DEBUG
|
|
|
|
}
|
|
|
|
|
|
|
|
try:
|
|
|
|
return name_to_level[logging_verbosity]
|
|
|
|
except Exception as e:
|
|
|
|
raise RuntimeError('Not supported logs verbosity (%s). Use one of %s.' %
|
|
|
|
(str(e), list(name_to_level)))
|
|
|
|
|
|
|
|
|
|
|
|
def main(_):
|
|
|
|
# Needed to make sure the logging output is visible.
|
|
|
|
# See https://github.com/tensorflow/tensorflow/issues/3047
|
|
|
|
logging_verbosity = logging_level_verbosity(FLAGS.logging_verbosity)
|
|
|
|
tf.logging.set_verbosity(logging_verbosity)
|
|
|
|
|
|
|
|
if not FLAGS.image_dir:
|
|
|
|
tf.logging.error('Must set flag --image_dir.')
|
|
|
|
return -1
|
|
|
|
|
|
|
|
# Prepare necessary directories that can be used during training
|
|
|
|
prepare_file_system()
|
|
|
|
|
|
|
|
# Look at the folder structure, and create lists of all the images.
|
|
|
|
image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage,
|
|
|
|
FLAGS.validation_percentage)
|
|
|
|
class_count = len(image_lists.keys())
|
|
|
|
if class_count == 0:
|
|
|
|
tf.logging.error('No valid folders of images found at ' + FLAGS.image_dir)
|
|
|
|
return -1
|
|
|
|
if class_count == 1:
|
|
|
|
tf.logging.error('Only one valid folder of images found at ' +
|
|
|
|
FLAGS.image_dir +
|
|
|
|
' - multiple classes are needed for classification.')
|
|
|
|
return -1
|
|
|
|
|
|
|
|
# See if the command-line flags mean we're applying any distortions.
|
|
|
|
do_distort_images = should_distort_images(
|
|
|
|
FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,
|
|
|
|
FLAGS.random_brightness)
|
|
|
|
|
|
|
|
# Set up the pre-trained graph.
|
|
|
|
module_spec = hub.load_module_spec(FLAGS.tfhub_module)
|
|
|
|
graph, bottleneck_tensor, resized_image_tensor, wants_quantization = (
|
|
|
|
create_module_graph(module_spec))
|
|
|
|
|
|
|
|
# Add the new layer that we'll be training.
|
|
|
|
with graph.as_default():
|
|
|
|
(train_step, cross_entropy, bottleneck_input,
|
|
|
|
ground_truth_input, final_tensor) = add_final_retrain_ops(
|
|
|
|
class_count, FLAGS.final_tensor_name, bottleneck_tensor,
|
|
|
|
wants_quantization, is_training=True)
|
|
|
|
|
|
|
|
with tf.Session(graph=graph) as sess:
|
|
|
|
# Initialize all weights: for the module to their pretrained values,
|
|
|
|
# and for the newly added retraining layer to random initial values.
|
|
|
|
init = tf.global_variables_initializer()
|
|
|
|
sess.run(init)
|
|
|
|
|
|
|
|
# Set up the image decoding sub-graph.
|
|
|
|
jpeg_data_tensor, decoded_image_tensor = add_jpeg_decoding(module_spec)
|
|
|
|
|
|
|
|
if do_distort_images:
|
|
|
|
# We will be applying distortions, so set up the operations we'll need.
|
|
|
|
(distorted_jpeg_data_tensor,
|
|
|
|
distorted_image_tensor) = add_input_distortions(
|
|
|
|
FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,
|
|
|
|
FLAGS.random_brightness, module_spec)
|
|
|
|
else:
|
|
|
|
# We'll make sure we've calculated the 'bottleneck' image summaries and
|
|
|
|
# cached them on disk.
|
|
|
|
cache_bottlenecks(sess, image_lists, FLAGS.image_dir,
|
|
|
|
FLAGS.bottleneck_dir, jpeg_data_tensor,
|
|
|
|
decoded_image_tensor, resized_image_tensor,
|
|
|
|
bottleneck_tensor, FLAGS.tfhub_module)
|
|
|
|
|
|
|
|
# Create the operations we need to evaluate the accuracy of our new layer.
|
|
|
|
evaluation_step, _ = add_evaluation_step(final_tensor, ground_truth_input)
|
|
|
|
|
|
|
|
# Merge all the summaries and write them out to the summaries_dir
|
|
|
|
merged = tf.summary.merge_all()
|
|
|
|
train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
|
|
|
|
sess.graph)
|
|
|
|
|
|
|
|
validation_writer = tf.summary.FileWriter(
|
|
|
|
FLAGS.summaries_dir + '/validation')
|
|
|
|
|
|
|
|
# Create a train saver that is used to restore values into an eval graph
|
|
|
|
# when exporting models.
|
|
|
|
train_saver = tf.train.Saver()
|
|
|
|
|
|
|
|
# Run the training for as many cycles as requested on the command line.
|
|
|
|
for i in range(FLAGS.how_many_training_steps):
|
|
|
|
# Get a batch of input bottleneck values, either calculated fresh every
|
|
|
|
# time with distortions applied, or from the cache stored on disk.
|
|
|
|
if do_distort_images:
|
|
|
|
(train_bottlenecks,
|
|
|
|
train_ground_truth) = get_random_distorted_bottlenecks(
|
|
|
|
sess, image_lists, FLAGS.train_batch_size, 'training',
|
|
|
|
FLAGS.image_dir, distorted_jpeg_data_tensor,
|
|
|
|
distorted_image_tensor, resized_image_tensor, bottleneck_tensor)
|
|
|
|
else:
|
|
|
|
(train_bottlenecks,
|
|
|
|
train_ground_truth, _) = get_random_cached_bottlenecks(
|
|
|
|
sess, image_lists, FLAGS.train_batch_size, 'training',
|
|
|
|
FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
|
|
|
|
decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
|
|
|
|
FLAGS.tfhub_module)
|
|
|
|
# Feed the bottlenecks and ground truth into the graph, and run a training
|
|
|
|
# step. Capture training summaries for TensorBoard with the `merged` op.
|
|
|
|
train_summary, _ = sess.run(
|
|
|
|
[merged, train_step],
|
|
|
|
feed_dict={bottleneck_input: train_bottlenecks,
|
|
|
|
ground_truth_input: train_ground_truth})
|
|
|
|
train_writer.add_summary(train_summary, i)
|
|
|
|
|
|
|
|
# Every so often, print out how well the graph is training.
|
|
|
|
is_last_step = (i + 1 == FLAGS.how_many_training_steps)
|
|
|
|
if (i % FLAGS.eval_step_interval) == 0 or is_last_step:
|
|
|
|
train_accuracy, cross_entropy_value = sess.run(
|
|
|
|
[evaluation_step, cross_entropy],
|
|
|
|
feed_dict={bottleneck_input: train_bottlenecks,
|
|
|
|
ground_truth_input: train_ground_truth})
|
|
|
|
tf.logging.info('%s: Step %d: Train accuracy = %.1f%%' %
|
|
|
|
(datetime.now(), i, train_accuracy * 100))
|
|
|
|
tf.logging.info('%s: Step %d: Cross entropy = %f' %
|
|
|
|
(datetime.now(), i, cross_entropy_value))
|
|
|
|
# TODO: Make this use an eval graph, to avoid quantization
|
|
|
|
# moving averages being updated by the validation set, though in
|
|
|
|
# practice this makes a negligable difference.
|
|
|
|
validation_bottlenecks, validation_ground_truth, _ = (
|
|
|
|
get_random_cached_bottlenecks(
|
|
|
|
sess, image_lists, FLAGS.validation_batch_size, 'validation',
|
|
|
|
FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
|
|
|
|
decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
|
|
|
|
FLAGS.tfhub_module))
|
|
|
|
# Run a validation step and capture training summaries for TensorBoard
|
|
|
|
# with the `merged` op.
|
|
|
|
validation_summary, validation_accuracy = sess.run(
|
|
|
|
[merged, evaluation_step],
|
|
|
|
feed_dict={bottleneck_input: validation_bottlenecks,
|
|
|
|
ground_truth_input: validation_ground_truth})
|
|
|
|
validation_writer.add_summary(validation_summary, i)
|
|
|
|
tf.logging.info('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' %
|
|
|
|
(datetime.now(), i, validation_accuracy * 100,
|
|
|
|
len(validation_bottlenecks)))
|
|
|
|
|
|
|
|
# Store intermediate results
|
|
|
|
intermediate_frequency = FLAGS.intermediate_store_frequency
|
|
|
|
|
|
|
|
if (intermediate_frequency > 0 and (i % intermediate_frequency == 0)
|
|
|
|
and i > 0):
|
|
|
|
# If we want to do an intermediate save, save a checkpoint of the train
|
|
|
|
# graph, to restore into the eval graph.
|
|
|
|
train_saver.save(sess, CHECKPOINT_NAME)
|
|
|
|
intermediate_file_name = (FLAGS.intermediate_output_graphs_dir +
|
|
|
|
'intermediate_' + str(i) + '.pb')
|
|
|
|
tf.logging.info('Save intermediate result to : ' +
|
|
|
|
intermediate_file_name)
|
|
|
|
save_graph_to_file(intermediate_file_name, module_spec,
|
|
|
|
class_count)
|
|
|
|
|
|
|
|
# After training is complete, force one last save of the train checkpoint.
|
|
|
|
train_saver.save(sess, CHECKPOINT_NAME)
|
|
|
|
|
|
|
|
# We've completed all our training, so run a final test evaluation on
|
|
|
|
# some new images we haven't used before.
|
|
|
|
run_final_eval(sess, module_spec, class_count, image_lists,
|
|
|
|
jpeg_data_tensor, decoded_image_tensor, resized_image_tensor,
|
|
|
|
bottleneck_tensor)
|
|
|
|
|
|
|
|
# Write out the trained graph and labels with the weights stored as
|
|
|
|
# constants.
|
|
|
|
tf.logging.info('Save final result to : ' + FLAGS.output_graph)
|
|
|
|
if wants_quantization:
|
|
|
|
tf.logging.info('The model is instrumented for quantization with TF-Lite')
|
|
|
|
save_graph_to_file(FLAGS.output_graph, module_spec, class_count)
|
|
|
|
with tf.gfile.GFile(FLAGS.output_labels, 'w') as f:
|
|
|
|
f.write('\n'.join(image_lists.keys()) + '\n')
|
|
|
|
|
|
|
|
if FLAGS.saved_model_dir:
|
|
|
|
export_model(module_spec, class_count, FLAGS.saved_model_dir)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
|
|
'--image_dir',
|
|
|
|
type=str,
|
2019-05-06 02:58:26 +02:00
|
|
|
default='Images/TrainingImages',
|
2019-05-05 18:00:51 +02:00
|
|
|
help='Path to folders of labeled images.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--output_graph',
|
|
|
|
type=str,
|
2019-05-06 04:15:57 +02:00
|
|
|
default='Model/retrained_graph.pb',
|
2019-05-05 18:00:51 +02:00
|
|
|
help='Where to save the trained graph.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--intermediate_output_graphs_dir',
|
|
|
|
type=str,
|
|
|
|
default='/tmp/intermediate_graph/',
|
|
|
|
help='Where to save the intermediate graphs.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--intermediate_store_frequency',
|
|
|
|
type=int,
|
|
|
|
default=0,
|
|
|
|
help="""\
|
|
|
|
How many steps to store intermediate graph. If "0" then will not
|
|
|
|
store.\
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--output_labels',
|
|
|
|
type=str,
|
2019-05-06 04:15:57 +02:00
|
|
|
default='Model/retrained_labels.txt',
|
2019-05-05 18:00:51 +02:00
|
|
|
help='Where to save the trained graph\'s labels.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--summaries_dir',
|
|
|
|
type=str,
|
2019-05-06 02:58:26 +02:00
|
|
|
default='Model/retrain_logs',
|
2019-05-05 18:00:51 +02:00
|
|
|
help='Where to save summary logs for TensorBoard.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--how_many_training_steps',
|
|
|
|
type=int,
|
|
|
|
default=4000,
|
|
|
|
help='How many training steps to run before ending.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--learning_rate',
|
|
|
|
type=float,
|
|
|
|
default=0.01,
|
|
|
|
help='How large a learning rate to use when training.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--testing_percentage',
|
|
|
|
type=int,
|
|
|
|
default=10,
|
|
|
|
help='What percentage of images to use as a test set.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--validation_percentage',
|
|
|
|
type=int,
|
|
|
|
default=10,
|
|
|
|
help='What percentage of images to use as a validation set.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--eval_step_interval',
|
|
|
|
type=int,
|
|
|
|
default=10,
|
|
|
|
help='How often to evaluate the training results.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--train_batch_size',
|
|
|
|
type=int,
|
|
|
|
default=100,
|
|
|
|
help='How many images to train on at a time.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--test_batch_size',
|
|
|
|
type=int,
|
|
|
|
default=-1,
|
|
|
|
help="""\
|
|
|
|
How many images to test on. This test set is only used once, to evaluate
|
|
|
|
the final accuracy of the model after training completes.
|
|
|
|
A value of -1 causes the entire test set to be used, which leads to more
|
|
|
|
stable results across runs.\
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--validation_batch_size',
|
|
|
|
type=int,
|
|
|
|
default=100,
|
|
|
|
help="""\
|
|
|
|
How many images to use in an evaluation batch. This validation set is
|
|
|
|
used much more often than the test set, and is an early indicator of how
|
|
|
|
accurate the model is during training.
|
|
|
|
A value of -1 causes the entire validation set to be used, which leads to
|
|
|
|
more stable results across training iterations, but may be slower on large
|
|
|
|
training sets.\
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--print_misclassified_test_images',
|
|
|
|
default=False,
|
|
|
|
help="""\
|
|
|
|
Whether to print out a list of all misclassified test images.\
|
|
|
|
""",
|
|
|
|
action='store_true'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--bottleneck_dir',
|
|
|
|
type=str,
|
2019-05-06 04:18:13 +02:00
|
|
|
default='tmp/bottleneck',
|
2019-05-05 18:00:51 +02:00
|
|
|
help='Path to cache bottleneck layer values as files.'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--final_tensor_name',
|
|
|
|
type=str,
|
|
|
|
default='final_result',
|
|
|
|
help="""\
|
|
|
|
The name of the output classification layer in the retrained graph.\
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--flip_left_right',
|
|
|
|
default=False,
|
|
|
|
help="""\
|
|
|
|
Whether to randomly flip half of the training images horizontally.\
|
|
|
|
""",
|
|
|
|
action='store_true'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--random_crop',
|
|
|
|
type=int,
|
|
|
|
default=0,
|
|
|
|
help="""\
|
|
|
|
A percentage determining how much of a margin to randomly crop off the
|
|
|
|
training images.\
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--random_scale',
|
|
|
|
type=int,
|
|
|
|
default=0,
|
|
|
|
help="""\
|
|
|
|
A percentage determining how much to randomly scale up the size of the
|
|
|
|
training images by.\
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--random_brightness',
|
|
|
|
type=int,
|
|
|
|
default=0,
|
|
|
|
help="""\
|
|
|
|
A percentage determining how much to randomly multiply the training image
|
|
|
|
input pixels up or down by.\
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--tfhub_module',
|
|
|
|
type=str,
|
|
|
|
default=(
|
|
|
|
'https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1'),
|
|
|
|
help="""\
|
|
|
|
Which TensorFlow Hub module to use. For more options,
|
|
|
|
search https://tfhub.dev for image feature vector modules.\
|
|
|
|
""")
|
|
|
|
parser.add_argument(
|
|
|
|
'--saved_model_dir',
|
|
|
|
type=str,
|
2019-05-06 04:23:35 +02:00
|
|
|
default='Model',
|
2019-05-05 18:00:51 +02:00
|
|
|
help='Where to save the exported graph.')
|
|
|
|
parser.add_argument(
|
|
|
|
'--logging_verbosity',
|
|
|
|
type=str,
|
|
|
|
default='INFO',
|
|
|
|
choices=['DEBUG', 'INFO', 'WARN', 'ERROR', 'FATAL'],
|
|
|
|
help='How much logging output should be produced.')
|
|
|
|
FLAGS, unparsed = parser.parse_known_args()
|
|
|
|
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
|