Updated script for img recognition
This commit is contained in:
parent
ed36703151
commit
991398e162
@ -72,6 +72,43 @@ def load_labels(label_file):
|
||||
label.append(l.rstrip())
|
||||
return label
|
||||
|
||||
def classify(model="Model/graph.pb",
|
||||
label_file="Model/retrained_labels.txt",
|
||||
input_height=299,
|
||||
input_width=299,
|
||||
input_mean=128,
|
||||
input_std=128,
|
||||
input_layer="input", #"input",
|
||||
output_layer="final_result"): # "InceptionV3/Predictions/Reshape_1"):
|
||||
"""Returns list of tuples consisting of name of file, category and certainity (0 - 1)"""
|
||||
graph = load_graph(model_file)
|
||||
|
||||
files = []
|
||||
for filename in os.listdir('Images/TestImages'):
|
||||
t = read_tensor_from_image_file(
|
||||
f'Images/TestImages/{filename}',
|
||||
input_height=input_height,
|
||||
input_width=input_width,
|
||||
input_mean=input_mean,
|
||||
input_std=input_std)
|
||||
input_name = "import/" + input_layer
|
||||
output_name = "import/" + output_layer
|
||||
input_operation = graph.get_operation_by_name(input_name)
|
||||
output_operation = graph.get_operation_by_name(output_name)
|
||||
|
||||
with tf.Session(graph=graph) as sess:
|
||||
results = sess.run(output_operation.outputs[0], {
|
||||
input_operation.outputs[0]: t
|
||||
})
|
||||
results = np.squeeze(results)
|
||||
|
||||
top_k = results.argsort()[-5:][::-1]
|
||||
labels = load_labels(label_file)
|
||||
|
||||
files.append((filename, labels[top_k[0]], results[top_k[0]]))
|
||||
print(f'{filename}: {labels[top_k[0]]} with {results[top_k[0]] * 100}% certainity')
|
||||
return files
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
model_file = "Model/graph.pb"
|
||||
@ -128,29 +165,9 @@ if __name__ == "__main__":
|
||||
if args.output_layer:
|
||||
output_layer = args.output_layer
|
||||
|
||||
graph = load_graph(model_file)
|
||||
|
||||
for filename in os.listdir('Images/TestImages'):
|
||||
t = read_tensor_from_image_file(
|
||||
f'Images/TestImages/{filename}',
|
||||
input_height=input_height,
|
||||
input_width=input_width,
|
||||
input_mean=input_mean,
|
||||
input_std=input_std)
|
||||
input_name = "import/" + input_layer
|
||||
output_name = "import/" + output_layer
|
||||
input_operation = graph.get_operation_by_name(input_name)
|
||||
output_operation = graph.get_operation_by_name(output_name)
|
||||
|
||||
with tf.Session(graph=graph) as sess:
|
||||
results = sess.run(output_operation.outputs[0], {
|
||||
input_operation.outputs[0]: t
|
||||
})
|
||||
results = np.squeeze(results)
|
||||
|
||||
top_k = results.argsort()[-5:][::-1]
|
||||
labels = load_labels(label_file)
|
||||
print(f'{filename}: {labels[top_k[0]]} with {results[top_k[0]] * 100}% certainity')
|
||||
classify(model=model_file, label_file=label_file, input_height=input_height, input_width=input_width,
|
||||
input_mean=input_mean, input_std=input_std, input_layer=input_layer, output_layer=output_layer)
|
||||
|
||||
# for i in top_k:
|
||||
# print(labels[i], results[i])
|
||||
|
Loading…
Reference in New Issue
Block a user