AStar changes optimalisation

This commit is contained in:
Maciej Sobkowiak 2019-04-27 18:04:06 +02:00
parent 4ee1e5af4f
commit e0a0e4f456
3 changed files with 174 additions and 62 deletions

View File

@ -2,70 +2,182 @@ import numpy as np
from heapq import * # pylint: disable=unused-wildcard-import from heapq import * # pylint: disable=unused-wildcard-import
def heuristic(a, b):
x = abs(a[0]-b[0]) def astar(table, start, end):
y = abs(a[1]-b[1]) """Returns a list of tuples as a path from the given start to the given end in the given table"""
if x > y: # Create start and end node
return 14*y + 10*(x - y) start_node = table[start[0]][start[1]]
else: start_node.g = start_node.h = start_node.f = 0
return 14*x + 10*(y - x) end_node = table[end[0]][end[1]]
end_node.g = end_node.h = end_node.f = 0
# Initialize both open and closed list
open_list = []
closed_list = []
# Add the start node
open_list.append(start_node)
def Astar(array, start, goal): # Loop until you find the end
while len(open_list) > 0:
# Get the current node
current_node = open_list[0]
current_index = 0
for index, item in enumerate(open_list):
if item.f < current_node.f:
current_node = item
current_index = index
neighbors = [(0, 1), (0, -1), (1, 0), (-1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] # Pop current off open list, add to closed list
open_list.pop(current_index)
closed_list.append(current_node)
# Found the goal
if current_node == end_node:
path = []
current = current_node
while current is not None:
path.append((current.row,current.col))
current = current.parent
return path[::-1] # Return reversed path
came_from = {} # Generate children
gscore = {start: 0} children = []
fscore = {start: heuristic(start, goal)} for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: # Adjacent squares
oheap = []
checked = []
heappush(oheap, (fscore[start], start)) # Get node position #check
node_position = (current_node.row + new_position[0], current_node.col + new_position[1])
while oheap: # Make sure within range
if node_position[0] > (len(table) - 1) or node_position[0] < 0 or node_position[1] > (len(table[len(table)-1]) -1) or node_position[1] < 0:
current = heappop(oheap)[1]
checked.append(current)
if current == goal:
data = []
while current in came_from:
data.append(current)
current = came_from[current]
return list(reversed(data)), checked
print("array current",array[current[0],current[1]])
array[current[0], current[1]]=2
for i, j in neighbors:
neighbor = current[0] + i, current[1] + j
tentative_g_score = gscore[current] + heuristic(current, neighbor)
if 0 <= neighbor[0] < array.shape[0]:
if 0 <= neighbor[1] < array.shape[1]:
if array.flat[array.shape[1] * neighbor[0]+neighbor[1]] == 1:
continue
else:
# array bound y walls
continue
else:
# array bound x walls
continue continue
if array[neighbor[0]][neighbor[1]] == 2 and tentative_g_score >= gscore.get(neighbor, 0): # Make sure walkable terrain
if table[node_position[0]][node_position[1]].field_type == 3:
continue continue
if tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1]for i in oheap]: # Create new node
came_from[neighbor] = current table[node_position[0]][node_position[1]].parent = current_node
gscore[neighbor] = tentative_g_score #new_node = table[node_position[0]][node_position[1]]
fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal) print("Dla :",node_position[0],node_position[1],"rodzicem jest:",current_node.row,current_node.col)
heappush(oheap, (fscore[neighbor], neighbor))
return False # Append
children.append(table[node_position[0]][node_position[1]])
# Loop through children
for child in children:
# Child is on the closed list
for closed_child in closed_list:
if child == closed_child:
continue
# Create the f, g, and h values
child.g = current_node.g + 1
child.h = ((child.row - end_node.row) ** 2) + ((child.col - end_node.col) ** 2)
child.f = child.g + child.h
# Child is already in the open list
for open_node in open_list:
if child == open_node and child.g > open_node.g:
continue
# Add the child to the open list
open_list.append(child)
class AStarNode():
def __init__(self, parent=None, position=None):
self.parent = parent
self.position = position
self.g = 0
self.h = 0
self.f = 0
def __eq__(self, other):
return self.position == other.position
def APath(table, start, end):
"""Returns a list of tuples as a path from the given start to the given end in the given table"""
# Create start and end node
start_node = AStarNode(None, start)
start_node.g = start_node.h = start_node.f = 0
end_node = AStarNode(None, end)
end_node.g = end_node.h = end_node.f = 0
# Initialize both open and closed list
open_list = []
closed_list = []
# Add the start node
open_list.append(start_node)
# Loop until you find the end
while len(open_list) > 0:
# Get the current node
current_node = open_list[0]
current_index = 0
for index, item in enumerate(open_list):
if item.f < current_node.f:
current_node = item
current_index = index
# Pop current off open list, add to closed list
open_list.pop(current_index)
closed_list.append(current_node)
# Found the goal
if current_node == end_node:
path = []
current = current_node
while current is not None:
path.append(current.position)
current = current.parent
return path[::-1] # Return reversed path
# Generate children
children = []
for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: # Adjacent squares
# Get node position
node_position = (current_node.position[0] + new_position[0], current_node.position[1] + new_position[1])
# Make sure within range
if node_position[0] > (len(table) - 1) or node_position[0] < 0 or node_position[1] > (len(table[len(table)-1]) -1) or node_position[1] < 0:
continue
# Make sure walkable terrain
if table[node_position[0]][node_position[1]].field_type == 3:
continue
# Create new node
new_node = AStarNode(current_node, node_position)
# Append
children.append(new_node)
# Loop through children
for child in children:
# Child is on the closed list
for closed_child in closed_list:
if child == closed_child:
continue
# Create the f, g, and h values
child.g = current_node.g + 1
child.h = ((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] - end_node.position[1]) ** 2)
child.f = child.g + child.h
# Child is already in the open list
for open_node in open_list:
if child == open_node and child.g > open_node.g:
continue
# Add the child to the open list
open_list.append(child)

View File

@ -41,15 +41,12 @@ class Node:
ORANGE = (255, 165, 0) ORANGE = (255, 165, 0)
def __init__(self, row: int, col: int, def __init__(self, row: int, col: int,
field_type: int = 0, reachable: bool = True): field_type: int = 0):
self.row = row self.row = row
self.col = col self.col = col
self.field_type = field_type self.field_type = field_type
self.reachable = reachable
self.visited = False
def visit(self):
self.visited = True
def draw(self, screen): def draw(self, screen):
color = self.get_field_color() color = self.get_field_color()

View File

@ -2,7 +2,7 @@ import pygame as pg
import numpy as np import numpy as np
import random import random
from UI.grid import Grid, Node from UI.grid import Grid, Node
from UI.Apath import Astar from UI.Apath import APath, astar
@ -32,7 +32,7 @@ class Window():
grid.change_field(19, 19, 2) grid.change_field(19, 19, 2)
#random obsticle #random obsticle
for x in range(40): for x in range(70):
grid.change_field(random.randint(1,18),random.randint(1,18),3) grid.change_field(random.randint(1,18),random.randint(1,18),3)
#path #path
@ -41,17 +41,20 @@ class Window():
#convert table to support Apath algoritm #convert table to support Apath algoritm
array = [[self.grid.table[col][row] for row in range(cols)] for col in range(rows)] array = [[self.grid.table[col][row] for row in range(cols)] for col in range(rows)]
for i,x in enumerate(array):
for j,y in enumerate(x):
if y.field_type == 3:
array[i][j] = None
nodes_array = np.array(array) #for i,x in enumerate(array):
# for j,y in enumerate(x):
# if y.field_type == 3:
# array[i][j] = None
#nodes_array = np.array(array)
#Run A star #Run A star
path, check = Astar(nodes_array, (0,0), (19, 19)) #path, check = Astar(nodes_array, (0,0), (19, 19))
print(path,"\n\n",check,"\n\n") #print(path,"\n\n",check,"\n\n")
path = APath(array,(0,0),(19,19))
print(path,"\n\n")
for t in path: for t in path: