AStar changes optimalisation
This commit is contained in:
parent
4ee1e5af4f
commit
e0a0e4f456
204
UI/Apath.py
204
UI/Apath.py
@ -2,70 +2,182 @@ import numpy as np
|
|||||||
from heapq import * # pylint: disable=unused-wildcard-import
|
from heapq import * # pylint: disable=unused-wildcard-import
|
||||||
|
|
||||||
|
|
||||||
def heuristic(a, b):
|
|
||||||
|
|
||||||
x = abs(a[0]-b[0])
|
def astar(table, start, end):
|
||||||
y = abs(a[1]-b[1])
|
"""Returns a list of tuples as a path from the given start to the given end in the given table"""
|
||||||
|
|
||||||
if x > y:
|
# Create start and end node
|
||||||
return 14*y + 10*(x - y)
|
start_node = table[start[0]][start[1]]
|
||||||
else:
|
start_node.g = start_node.h = start_node.f = 0
|
||||||
return 14*x + 10*(y - x)
|
end_node = table[end[0]][end[1]]
|
||||||
|
end_node.g = end_node.h = end_node.f = 0
|
||||||
|
|
||||||
|
# Initialize both open and closed list
|
||||||
|
open_list = []
|
||||||
|
closed_list = []
|
||||||
|
|
||||||
|
# Add the start node
|
||||||
|
open_list.append(start_node)
|
||||||
|
|
||||||
def Astar(array, start, goal):
|
# Loop until you find the end
|
||||||
|
while len(open_list) > 0:
|
||||||
|
|
||||||
|
# Get the current node
|
||||||
|
current_node = open_list[0]
|
||||||
|
current_index = 0
|
||||||
|
for index, item in enumerate(open_list):
|
||||||
|
if item.f < current_node.f:
|
||||||
|
current_node = item
|
||||||
|
current_index = index
|
||||||
|
|
||||||
neighbors = [(0, 1), (0, -1), (1, 0), (-1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
|
# Pop current off open list, add to closed list
|
||||||
|
open_list.pop(current_index)
|
||||||
|
closed_list.append(current_node)
|
||||||
|
|
||||||
|
# Found the goal
|
||||||
|
if current_node == end_node:
|
||||||
|
path = []
|
||||||
|
current = current_node
|
||||||
|
while current is not None:
|
||||||
|
path.append((current.row,current.col))
|
||||||
|
current = current.parent
|
||||||
|
return path[::-1] # Return reversed path
|
||||||
|
|
||||||
came_from = {}
|
# Generate children
|
||||||
gscore = {start: 0}
|
children = []
|
||||||
fscore = {start: heuristic(start, goal)}
|
for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: # Adjacent squares
|
||||||
oheap = []
|
|
||||||
checked = []
|
|
||||||
|
|
||||||
heappush(oheap, (fscore[start], start))
|
# Get node position #check
|
||||||
|
node_position = (current_node.row + new_position[0], current_node.col + new_position[1])
|
||||||
|
|
||||||
while oheap:
|
# Make sure within range
|
||||||
|
if node_position[0] > (len(table) - 1) or node_position[0] < 0 or node_position[1] > (len(table[len(table)-1]) -1) or node_position[1] < 0:
|
||||||
|
continue
|
||||||
|
|
||||||
current = heappop(oheap)[1]
|
# Make sure walkable terrain
|
||||||
checked.append(current)
|
if table[node_position[0]][node_position[1]].field_type == 3:
|
||||||
|
continue
|
||||||
|
|
||||||
if current == goal:
|
# Create new node
|
||||||
data = []
|
table[node_position[0]][node_position[1]].parent = current_node
|
||||||
while current in came_from:
|
#new_node = table[node_position[0]][node_position[1]]
|
||||||
data.append(current)
|
print("Dla :",node_position[0],node_position[1],"rodzicem jest:",current_node.row,current_node.col)
|
||||||
current = came_from[current]
|
|
||||||
|
|
||||||
return list(reversed(data)), checked
|
# Append
|
||||||
print("array current",array[current[0],current[1]])
|
children.append(table[node_position[0]][node_position[1]])
|
||||||
array[current[0], current[1]]=2
|
|
||||||
|
|
||||||
for i, j in neighbors:
|
# Loop through children
|
||||||
|
for child in children:
|
||||||
|
|
||||||
neighbor = current[0] + i, current[1] + j
|
# Child is on the closed list
|
||||||
|
for closed_child in closed_list:
|
||||||
tentative_g_score = gscore[current] + heuristic(current, neighbor)
|
if child == closed_child:
|
||||||
|
|
||||||
if 0 <= neighbor[0] < array.shape[0]:
|
|
||||||
if 0 <= neighbor[1] < array.shape[1]:
|
|
||||||
if array.flat[array.shape[1] * neighbor[0]+neighbor[1]] == 1:
|
|
||||||
continue
|
|
||||||
else:
|
|
||||||
# array bound y walls
|
|
||||||
continue
|
continue
|
||||||
else:
|
|
||||||
# array bound x walls
|
# Create the f, g, and h values
|
||||||
|
child.g = current_node.g + 1
|
||||||
|
child.h = ((child.row - end_node.row) ** 2) + ((child.col - end_node.col) ** 2)
|
||||||
|
child.f = child.g + child.h
|
||||||
|
|
||||||
|
# Child is already in the open list
|
||||||
|
for open_node in open_list:
|
||||||
|
if child == open_node and child.g > open_node.g:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Add the child to the open list
|
||||||
|
open_list.append(child)
|
||||||
|
|
||||||
|
class AStarNode():
|
||||||
|
|
||||||
|
def __init__(self, parent=None, position=None):
|
||||||
|
self.parent = parent
|
||||||
|
self.position = position
|
||||||
|
self.g = 0
|
||||||
|
self.h = 0
|
||||||
|
self.f = 0
|
||||||
|
|
||||||
|
def __eq__(self, other):
|
||||||
|
return self.position == other.position
|
||||||
|
|
||||||
|
|
||||||
|
def APath(table, start, end):
|
||||||
|
"""Returns a list of tuples as a path from the given start to the given end in the given table"""
|
||||||
|
|
||||||
|
# Create start and end node
|
||||||
|
start_node = AStarNode(None, start)
|
||||||
|
start_node.g = start_node.h = start_node.f = 0
|
||||||
|
end_node = AStarNode(None, end)
|
||||||
|
end_node.g = end_node.h = end_node.f = 0
|
||||||
|
|
||||||
|
# Initialize both open and closed list
|
||||||
|
open_list = []
|
||||||
|
closed_list = []
|
||||||
|
|
||||||
|
# Add the start node
|
||||||
|
open_list.append(start_node)
|
||||||
|
|
||||||
|
# Loop until you find the end
|
||||||
|
while len(open_list) > 0:
|
||||||
|
|
||||||
|
# Get the current node
|
||||||
|
current_node = open_list[0]
|
||||||
|
current_index = 0
|
||||||
|
for index, item in enumerate(open_list):
|
||||||
|
if item.f < current_node.f:
|
||||||
|
current_node = item
|
||||||
|
current_index = index
|
||||||
|
|
||||||
|
# Pop current off open list, add to closed list
|
||||||
|
open_list.pop(current_index)
|
||||||
|
closed_list.append(current_node)
|
||||||
|
|
||||||
|
# Found the goal
|
||||||
|
if current_node == end_node:
|
||||||
|
path = []
|
||||||
|
current = current_node
|
||||||
|
while current is not None:
|
||||||
|
path.append(current.position)
|
||||||
|
current = current.parent
|
||||||
|
return path[::-1] # Return reversed path
|
||||||
|
|
||||||
|
# Generate children
|
||||||
|
children = []
|
||||||
|
for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: # Adjacent squares
|
||||||
|
|
||||||
|
# Get node position
|
||||||
|
node_position = (current_node.position[0] + new_position[0], current_node.position[1] + new_position[1])
|
||||||
|
|
||||||
|
# Make sure within range
|
||||||
|
if node_position[0] > (len(table) - 1) or node_position[0] < 0 or node_position[1] > (len(table[len(table)-1]) -1) or node_position[1] < 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if array[neighbor[0]][neighbor[1]] == 2 and tentative_g_score >= gscore.get(neighbor, 0):
|
# Make sure walkable terrain
|
||||||
|
if table[node_position[0]][node_position[1]].field_type == 3:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1]for i in oheap]:
|
# Create new node
|
||||||
came_from[neighbor] = current
|
new_node = AStarNode(current_node, node_position)
|
||||||
gscore[neighbor] = tentative_g_score
|
|
||||||
fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)
|
# Append
|
||||||
heappush(oheap, (fscore[neighbor], neighbor))
|
children.append(new_node)
|
||||||
return False
|
|
||||||
|
# Loop through children
|
||||||
|
for child in children:
|
||||||
|
|
||||||
|
# Child is on the closed list
|
||||||
|
for closed_child in closed_list:
|
||||||
|
if child == closed_child:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Create the f, g, and h values
|
||||||
|
child.g = current_node.g + 1
|
||||||
|
child.h = ((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] - end_node.position[1]) ** 2)
|
||||||
|
child.f = child.g + child.h
|
||||||
|
|
||||||
|
# Child is already in the open list
|
||||||
|
for open_node in open_list:
|
||||||
|
if child == open_node and child.g > open_node.g:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Add the child to the open list
|
||||||
|
open_list.append(child)
|
||||||
|
@ -41,15 +41,12 @@ class Node:
|
|||||||
ORANGE = (255, 165, 0)
|
ORANGE = (255, 165, 0)
|
||||||
|
|
||||||
def __init__(self, row: int, col: int,
|
def __init__(self, row: int, col: int,
|
||||||
field_type: int = 0, reachable: bool = True):
|
field_type: int = 0):
|
||||||
self.row = row
|
self.row = row
|
||||||
self.col = col
|
self.col = col
|
||||||
self.field_type = field_type
|
self.field_type = field_type
|
||||||
self.reachable = reachable
|
|
||||||
self.visited = False
|
|
||||||
|
|
||||||
def visit(self):
|
|
||||||
self.visited = True
|
|
||||||
|
|
||||||
def draw(self, screen):
|
def draw(self, screen):
|
||||||
color = self.get_field_color()
|
color = self.get_field_color()
|
||||||
|
21
UI/window.py
21
UI/window.py
@ -2,7 +2,7 @@ import pygame as pg
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import random
|
import random
|
||||||
from UI.grid import Grid, Node
|
from UI.grid import Grid, Node
|
||||||
from UI.Apath import Astar
|
from UI.Apath import APath, astar
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -32,7 +32,7 @@ class Window():
|
|||||||
grid.change_field(19, 19, 2)
|
grid.change_field(19, 19, 2)
|
||||||
|
|
||||||
#random obsticle
|
#random obsticle
|
||||||
for x in range(40):
|
for x in range(70):
|
||||||
grid.change_field(random.randint(1,18),random.randint(1,18),3)
|
grid.change_field(random.randint(1,18),random.randint(1,18),3)
|
||||||
|
|
||||||
#path
|
#path
|
||||||
@ -41,17 +41,20 @@ class Window():
|
|||||||
|
|
||||||
#convert table to support Apath algoritm
|
#convert table to support Apath algoritm
|
||||||
array = [[self.grid.table[col][row] for row in range(cols)] for col in range(rows)]
|
array = [[self.grid.table[col][row] for row in range(cols)] for col in range(rows)]
|
||||||
for i,x in enumerate(array):
|
|
||||||
for j,y in enumerate(x):
|
|
||||||
if y.field_type == 3:
|
|
||||||
array[i][j] = None
|
|
||||||
|
|
||||||
nodes_array = np.array(array)
|
#for i,x in enumerate(array):
|
||||||
|
# for j,y in enumerate(x):
|
||||||
|
# if y.field_type == 3:
|
||||||
|
# array[i][j] = None
|
||||||
|
|
||||||
|
#nodes_array = np.array(array)
|
||||||
|
|
||||||
#Run A star
|
#Run A star
|
||||||
|
|
||||||
path, check = Astar(nodes_array, (0,0), (19, 19))
|
#path, check = Astar(nodes_array, (0,0), (19, 19))
|
||||||
print(path,"\n\n",check,"\n\n")
|
#print(path,"\n\n",check,"\n\n")
|
||||||
|
path = APath(array,(0,0),(19,19))
|
||||||
|
print(path,"\n\n")
|
||||||
|
|
||||||
|
|
||||||
for t in path:
|
for t in path:
|
||||||
|
Loading…
Reference in New Issue
Block a user