AStar changes optimalisation

This commit is contained in:
Maciej Sobkowiak 2019-04-27 18:04:06 +02:00
parent 4ee1e5af4f
commit e0a0e4f456
3 changed files with 174 additions and 62 deletions

View File

@ -2,70 +2,182 @@ import numpy as np
from heapq import * # pylint: disable=unused-wildcard-import
def heuristic(a, b):
x = abs(a[0]-b[0])
y = abs(a[1]-b[1])
def astar(table, start, end):
"""Returns a list of tuples as a path from the given start to the given end in the given table"""
if x > y:
return 14*y + 10*(x - y)
else:
return 14*x + 10*(y - x)
# Create start and end node
start_node = table[start[0]][start[1]]
start_node.g = start_node.h = start_node.f = 0
end_node = table[end[0]][end[1]]
end_node.g = end_node.h = end_node.f = 0
# Initialize both open and closed list
open_list = []
closed_list = []
# Add the start node
open_list.append(start_node)
def Astar(array, start, goal):
# Loop until you find the end
while len(open_list) > 0:
# Get the current node
current_node = open_list[0]
current_index = 0
for index, item in enumerate(open_list):
if item.f < current_node.f:
current_node = item
current_index = index
neighbors = [(0, 1), (0, -1), (1, 0), (-1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
# Pop current off open list, add to closed list
open_list.pop(current_index)
closed_list.append(current_node)
# Found the goal
if current_node == end_node:
path = []
current = current_node
while current is not None:
path.append((current.row,current.col))
current = current.parent
return path[::-1] # Return reversed path
came_from = {}
gscore = {start: 0}
fscore = {start: heuristic(start, goal)}
oheap = []
checked = []
# Generate children
children = []
for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: # Adjacent squares
heappush(oheap, (fscore[start], start))
# Get node position #check
node_position = (current_node.row + new_position[0], current_node.col + new_position[1])
while oheap:
current = heappop(oheap)[1]
checked.append(current)
if current == goal:
data = []
while current in came_from:
data.append(current)
current = came_from[current]
return list(reversed(data)), checked
print("array current",array[current[0],current[1]])
array[current[0], current[1]]=2
for i, j in neighbors:
neighbor = current[0] + i, current[1] + j
tentative_g_score = gscore[current] + heuristic(current, neighbor)
if 0 <= neighbor[0] < array.shape[0]:
if 0 <= neighbor[1] < array.shape[1]:
if array.flat[array.shape[1] * neighbor[0]+neighbor[1]] == 1:
continue
else:
# array bound y walls
continue
else:
# array bound x walls
# Make sure within range
if node_position[0] > (len(table) - 1) or node_position[0] < 0 or node_position[1] > (len(table[len(table)-1]) -1) or node_position[1] < 0:
continue
if array[neighbor[0]][neighbor[1]] == 2 and tentative_g_score >= gscore.get(neighbor, 0):
# Make sure walkable terrain
if table[node_position[0]][node_position[1]].field_type == 3:
continue
if tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1]for i in oheap]:
came_from[neighbor] = current
gscore[neighbor] = tentative_g_score
fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)
heappush(oheap, (fscore[neighbor], neighbor))
return False
# Create new node
table[node_position[0]][node_position[1]].parent = current_node
#new_node = table[node_position[0]][node_position[1]]
print("Dla :",node_position[0],node_position[1],"rodzicem jest:",current_node.row,current_node.col)
# Append
children.append(table[node_position[0]][node_position[1]])
# Loop through children
for child in children:
# Child is on the closed list
for closed_child in closed_list:
if child == closed_child:
continue
# Create the f, g, and h values
child.g = current_node.g + 1
child.h = ((child.row - end_node.row) ** 2) + ((child.col - end_node.col) ** 2)
child.f = child.g + child.h
# Child is already in the open list
for open_node in open_list:
if child == open_node and child.g > open_node.g:
continue
# Add the child to the open list
open_list.append(child)
class AStarNode():
def __init__(self, parent=None, position=None):
self.parent = parent
self.position = position
self.g = 0
self.h = 0
self.f = 0
def __eq__(self, other):
return self.position == other.position
def APath(table, start, end):
"""Returns a list of tuples as a path from the given start to the given end in the given table"""
# Create start and end node
start_node = AStarNode(None, start)
start_node.g = start_node.h = start_node.f = 0
end_node = AStarNode(None, end)
end_node.g = end_node.h = end_node.f = 0
# Initialize both open and closed list
open_list = []
closed_list = []
# Add the start node
open_list.append(start_node)
# Loop until you find the end
while len(open_list) > 0:
# Get the current node
current_node = open_list[0]
current_index = 0
for index, item in enumerate(open_list):
if item.f < current_node.f:
current_node = item
current_index = index
# Pop current off open list, add to closed list
open_list.pop(current_index)
closed_list.append(current_node)
# Found the goal
if current_node == end_node:
path = []
current = current_node
while current is not None:
path.append(current.position)
current = current.parent
return path[::-1] # Return reversed path
# Generate children
children = []
for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: # Adjacent squares
# Get node position
node_position = (current_node.position[0] + new_position[0], current_node.position[1] + new_position[1])
# Make sure within range
if node_position[0] > (len(table) - 1) or node_position[0] < 0 or node_position[1] > (len(table[len(table)-1]) -1) or node_position[1] < 0:
continue
# Make sure walkable terrain
if table[node_position[0]][node_position[1]].field_type == 3:
continue
# Create new node
new_node = AStarNode(current_node, node_position)
# Append
children.append(new_node)
# Loop through children
for child in children:
# Child is on the closed list
for closed_child in closed_list:
if child == closed_child:
continue
# Create the f, g, and h values
child.g = current_node.g + 1
child.h = ((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] - end_node.position[1]) ** 2)
child.f = child.g + child.h
# Child is already in the open list
for open_node in open_list:
if child == open_node and child.g > open_node.g:
continue
# Add the child to the open list
open_list.append(child)

View File

@ -41,15 +41,12 @@ class Node:
ORANGE = (255, 165, 0)
def __init__(self, row: int, col: int,
field_type: int = 0, reachable: bool = True):
field_type: int = 0):
self.row = row
self.col = col
self.field_type = field_type
self.reachable = reachable
self.visited = False
def visit(self):
self.visited = True
def draw(self, screen):
color = self.get_field_color()

View File

@ -2,7 +2,7 @@ import pygame as pg
import numpy as np
import random
from UI.grid import Grid, Node
from UI.Apath import Astar
from UI.Apath import APath, astar
@ -32,7 +32,7 @@ class Window():
grid.change_field(19, 19, 2)
#random obsticle
for x in range(40):
for x in range(70):
grid.change_field(random.randint(1,18),random.randint(1,18),3)
#path
@ -41,17 +41,20 @@ class Window():
#convert table to support Apath algoritm
array = [[self.grid.table[col][row] for row in range(cols)] for col in range(rows)]
for i,x in enumerate(array):
for j,y in enumerate(x):
if y.field_type == 3:
array[i][j] = None
nodes_array = np.array(array)
#for i,x in enumerate(array):
# for j,y in enumerate(x):
# if y.field_type == 3:
# array[i][j] = None
#nodes_array = np.array(array)
#Run A star
path, check = Astar(nodes_array, (0,0), (19, 19))
print(path,"\n\n",check,"\n\n")
#path, check = Astar(nodes_array, (0,0), (19, 19))
#print(path,"\n\n",check,"\n\n")
path = APath(array,(0,0),(19,19))
print(path,"\n\n")
for t in path: