2019SZI-Projekt/UI/Apath.py

184 lines
6.0 KiB
Python

import numpy as np
from heapq import * # pylint: disable=unused-wildcard-import
def astar(table, start, end):
"""Returns a list of tuples as a path from the given start to the given end in the given table"""
# Create start and end node
start_node = table[start[0]][start[1]]
start_node.g = start_node.h = start_node.f = 0
end_node = table[end[0]][end[1]]
end_node.g = end_node.h = end_node.f = 0
# Initialize both open and closed list
open_list = []
closed_list = []
# Add the start node
open_list.append(start_node)
# Loop until you find the end
while len(open_list) > 0:
# Get the current node
current_node = open_list[0]
current_index = 0
for index, item in enumerate(open_list):
if item.f < current_node.f:
current_node = item
current_index = index
# Pop current off open list, add to closed list
open_list.pop(current_index)
closed_list.append(current_node)
# Found the goal
if current_node == end_node:
path = []
current = current_node
while current is not None:
path.append((current.row,current.col))
current = current.parent
return path[::-1] # Return reversed path
# Generate children
children = []
for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: # Adjacent squares
# Get node position #check
node_position = (current_node.row + new_position[0], current_node.col + new_position[1])
# Make sure within range
if node_position[0] > (len(table) - 1) or node_position[0] < 0 or node_position[1] > (len(table[len(table)-1]) -1) or node_position[1] < 0:
continue
# Make sure walkable terrain
if table[node_position[0]][node_position[1]].field_type == 3:
continue
# Create new node
table[node_position[0]][node_position[1]].parent = current_node
#new_node = table[node_position[0]][node_position[1]]
print("Dla :",node_position[0],node_position[1],"rodzicem jest:",current_node.row,current_node.col)
# Append
children.append(table[node_position[0]][node_position[1]])
# Loop through children
for child in children:
# Child is on the closed list
for closed_child in closed_list:
if child == closed_child:
continue
# Create the f, g, and h values
child.g = current_node.g + 1
child.h = ((child.row - end_node.row) ** 2) + ((child.col - end_node.col) ** 2)
child.f = child.g + child.h
# Child is already in the open list
for open_node in open_list:
if child == open_node and child.g > open_node.g:
continue
# Add the child to the open list
open_list.append(child)
class AStarNode():
def __init__(self, parent=None, position=None):
self.parent = parent
self.position = position
self.g = 0
self.h = 0
self.f = 0
def __eq__(self, other):
return self.position == other.position
def APath(table, start, end):
"""Returns a list of tuples as a path from the given start to the given end in the given table"""
# Create start and end node
start_node = AStarNode(None, start)
start_node.g = start_node.h = start_node.f = 0
end_node = AStarNode(None, end)
end_node.g = end_node.h = end_node.f = 0
# Initialize both open and closed list
open_list = []
closed_list = []
# Add the start node
open_list.append(start_node)
# Loop until you find the end
while len(open_list) > 0:
# Get the current node
current_node = open_list[0]
current_index = 0
for index, item in enumerate(open_list):
if item.f < current_node.f:
current_node = item
current_index = index
# Pop current off open list, add to closed list
open_list.pop(current_index)
closed_list.append(current_node)
# Found the goal
if current_node == end_node:
path = []
current = current_node
while current is not None:
path.append(current.position)
current = current.parent
return path[::-1] # Return reversed path
# Generate children
children = []
for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: # Adjacent squares
# Get node position
node_position = (current_node.position[0] + new_position[0], current_node.position[1] + new_position[1])
# Make sure within range
if node_position[0] > (len(table) - 1) or node_position[0] < 0 or node_position[1] > (len(table[len(table)-1]) -1) or node_position[1] < 0:
continue
# Make sure walkable terrain
if table[node_position[0]][node_position[1]].field_type == 3:
continue
# Create new node
new_node = AStarNode(current_node, node_position)
# Append
children.append(new_node)
# Loop through children
for child in children:
# Child is on the closed list
for closed_child in closed_list:
if child == closed_child:
continue
# Create the f, g, and h values
child.g = current_node.g + 1
child.h = ((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] - end_node.position[1]) ** 2)
child.f = child.g + child.h
# Child is already in the open list
for open_node in open_list:
if child == open_node and child.g > open_node.g:
continue
# Add the child to the open list
open_list.append(child)