let's try with another knn method

git-svn-id: http://google-refine.googlecode.com/svn/trunk@254 7d457c2a-affb-35e4-300a-418c747d4874
This commit is contained in:
Stefano Mazzocchi 2010-03-09 08:09:35 +00:00
parent 358586ac8f
commit 546f87a536
5 changed files with 78 additions and 15 deletions

View File

@ -5,6 +5,7 @@ import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Properties;
@ -21,6 +22,9 @@ import com.metaweb.gridworks.clustering.Clusterer;
import com.metaweb.gridworks.model.Cell;
import com.metaweb.gridworks.model.Project;
import com.metaweb.gridworks.model.Row;
import com.wcohen.ss.expt.ClusterNGramBlocker;
import com.wcohen.ss.expt.MatchData;
import com.wcohen.ss.expt.Blocker.Pair;
import edu.mit.simile.vicino.Distance;
import edu.mit.simile.vicino.distances.BZip2Distance;
@ -39,7 +43,7 @@ public class kNNClusterer extends Clusterer {
static protected Map<String, Distance> _distances = new HashMap<String, Distance>();
List<List<? extends Serializable>> _clusters;
List<List<Serializable>> _clusters;
static {
_distances.put("levenshtein", new LevenshteinDistance());
@ -52,14 +56,14 @@ public class kNNClusterer extends Clusterer {
_distances.put("ppm", new PPMDistance());
}
class kNNClusteringRowVisitor implements RowVisitor {
class VPTreeClusteringRowVisitor implements RowVisitor {
Distance _distance;
JSONObject _config;
VPTreeBuilder _treeBuilder;
float _radius;
public kNNClusteringRowVisitor(Distance d, JSONObject o) {
public VPTreeClusteringRowVisitor(Distance d, JSONObject o) {
_distance = d;
_config = o;
_treeBuilder = new VPTreeBuilder(_distance);
@ -86,8 +90,67 @@ public class kNNClusterer extends Clusterer {
}
}
public class SizeComparator implements Comparator<List<? extends Serializable>> {
public int compare(List<? extends Serializable> o1, List<? extends Serializable> o2) {
class BlockingClusteringRowVisitor implements RowVisitor {
Distance _distance;
JSONObject _config;
MatchData _data;
float _radius;
HashSet<String> _set;
public BlockingClusteringRowVisitor(Distance d, JSONObject o) {
_distance = d;
_config = o;
_data = new MatchData();
_set = new HashSet<String>();
try {
_radius = (float) o.getJSONObject("params").getDouble("radius");
} catch (JSONException e) {
Gridworks.warn("No radius found, using default");
_radius = 0.1f;
}
}
public boolean visit(Project project, int rowIndex, Row row, boolean contextual) {
Cell cell = row.cells.get(_colindex);
if (cell != null && cell.value != null) {
Object v = cell.value;
String s = (v instanceof String) ? ((String) v) : v.toString().intern();
if (!_set.contains(s)) {
_set.add(s);
_data.addInstance("", "", s);
}
}
return false;
}
public Map<Serializable,List<Serializable>> getClusters() {
Map<Serializable,List<Serializable>> map = new HashMap<Serializable,List<Serializable>>();
ClusterNGramBlocker blocker = new ClusterNGramBlocker();
blocker.block(_data);
for (int i = 0; i < blocker.numCorrectPairs(); i++) {
Pair p = blocker.getPair(i);
String a = p.getA().unwrap();
String b = p.getB().unwrap();
List<Serializable> l = null;
if (!map.containsKey(a)) {
l = new ArrayList<Serializable>();
map.put(a, l);
} else {
l = map.get(a);
}
double d = _distance.d(a,b);
System.out.println(a + " | " + b + ": " + d);
if (d <= _radius) {
l.add(b);
}
}
return map;
}
}
public class SizeComparator implements Comparator<List<Serializable>> {
public int compare(List<Serializable> o1, List<Serializable> o2) {
return o2.size() - o1.size();
}
}
@ -98,18 +161,19 @@ public class kNNClusterer extends Clusterer {
}
public void computeClusters(Engine engine) {
kNNClusteringRowVisitor visitor = new kNNClusteringRowVisitor(_distance,_config);
//VPTreeClusteringRowVisitor visitor = new VPTreeClusteringRowVisitor(_distance,_config);
BlockingClusteringRowVisitor visitor = new BlockingClusteringRowVisitor(_distance,_config);
FilteredRows filteredRows = engine.getAllFilteredRows(true);
filteredRows.accept(_project, visitor);
Map<Serializable,List<? extends Serializable>> clusters = visitor.getClusters();
_clusters = new ArrayList<List<? extends Serializable>>(clusters.values());
Map<Serializable,List<Serializable>> clusters = visitor.getClusters();
_clusters = new ArrayList<List<Serializable>>(clusters.values());
Collections.sort(_clusters, new SizeComparator());
}
public void write(JSONWriter writer, Properties options) throws JSONException {
writer.array();
for (List<? extends Serializable> m : _clusters) {
for (List<Serializable> m : _clusters) {
if (m.size() > 1) {
writer.array();
for (Serializable s : m) {

View File

@ -9,7 +9,7 @@ public class BZip2Distance extends PseudoMetricDistance {
public double d2(String x, String y) {
String str = x + y;
float result = 0.0f;
double result = 0.0f;
try {
ByteArrayOutputStream baos = new ByteArrayOutputStream(str.length());
CBZip2OutputStream os = new CBZip2OutputStream(baos);

View File

@ -8,7 +8,7 @@ public class GZipDistance extends PseudoMetricDistance {
public double d2(String x, String y) {
String str = x + y;
float result = 0.0f;
double result = 0.0f;
try {
ByteArrayOutputStream baos = new ByteArrayOutputStream(str.length());
GZIPOutputStream os = new GZIPOutputStream(baos);

View File

@ -10,7 +10,7 @@ public class PPMDistance extends PseudoMetricDistance {
public double d2(String x, String y) {
String str = x + y;
float result = 0.0f;
double result = 0.0f;
try {
ByteArrayOutputStream baos = new ByteArrayOutputStream(str.length());
ArithCodeOutputStream os = new ArithCodeOutputStream(baos,new PPMModel(8));

View File

@ -9,8 +9,7 @@ public abstract class PseudoMetricDistance implements Distance {
double cyy = d2(y, y);
double cxy = d2(x, y);
double cyx = d2(y, x);
double result1 = (cxy + cyx) / (cxx + cyy) - 1.0d;
return result1;
return (cxy + cyx) / (cxx + cyy) - 1.0d;
}
protected abstract double d2(String x, String y);