challenging-america-word-ga.../neural-trigram.ipynb

210 lines
7.0 KiB
Plaintext
Raw Normal View History

2022-05-08 19:33:06 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "dfeb7061",
"metadata": {},
"outputs": [],
"source": [
"from torchtext.vocab import build_vocab_from_iterator\n",
"from torch.utils.data import DataLoader\n",
"import torch\n",
"from torch import nn\n",
"import pandas as pd\n",
"import nltk\n",
"import regex as re\n",
"import csv\n",
"import itertools\n",
"from nltk import word_tokenize\n",
"from os.path import exists\n",
"\n",
"\n",
"def clean(text):\n",
" text = str(text).strip().lower()\n",
" text = re.sub(\"|>|<|\\.|\\\\\\\\|\\\"|”|-|,|\\*|:|\\/\", \"\", text)\n",
" text = text.replace('\\\\\\\\n', \" \").replace(\"'t\", \" not\").replace(\"'s\", \" is\").replace(\"'ll\", \" will\").replace(\"'m\", \" am\").replace(\"'ve\", \" have\")\n",
" text = text.replace(\"'\", \"\")\n",
" return text\n",
"\n",
"def get_words_from_line(line, specials = True):\n",
" line = line.rstrip()\n",
" if specials:\n",
" yield '<s>'\n",
" for m in re.finditer(r'[\\p{L}0-9\\*]+|\\p{P}+', line):\n",
" yield m.group(0).lower()\n",
" if specials:\n",
" yield '</s>'\n",
"\n",
"def get_word_lines_from_data(d):\n",
" for line in d:\n",
" yield get_words_from_line(line)\n",
"\n",
"\n",
"class SimpleBigramNeuralLanguageModel(torch.nn.Module):\n",
" \n",
" def __init__(self, vocabulary_size, embedding_size):\n",
" super(SimpleBigramNeuralLanguageModel, self).__init__()\n",
" self.model = nn.Sequential(\n",
" nn.Embedding(vocabulary_size, embedding_size),\n",
" nn.Linear(embedding_size, vocabulary_size),\n",
" nn.Softmax()\n",
" )\n",
"\n",
" def forward(self, x):\n",
" return self.model(x)\n",
"\n",
"def look_ahead_iterator(gen):\n",
" w1 = None\n",
" for item in gen:\n",
" if w1 is not None:\n",
" yield (w1, item)\n",
" w1 = item\n",
" \n",
"class Bigrams(torch.utils.data.IterableDataset):\n",
" def __init__(self, data, vocabulary_size):\n",
" self.vocab = build_vocab_from_iterator(\n",
" get_word_lines_from_data(data),\n",
" max_tokens = vocabulary_size,\n",
" specials = ['<unk>'])\n",
" self.vocab.set_default_index(self.vocab['<unk>'])\n",
" self.vocabulary_size = vocabulary_size\n",
" self.data = data\n",
"\n",
" def __iter__(self):\n",
" return look_ahead_iterator(\n",
" (self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_data(self.data))))\n",
"\n",
"\n",
"# ładowanie danych treningowych\n",
"in_file = 'train/in.tsv.xz'\n",
"out_file = 'train/expected.tsv'\n",
"\n",
"X_train = pd.read_csv(in_file, sep='\\t', header=None, quoting=csv.QUOTE_NONE, nrows=200000, on_bad_lines=\"skip\", encoding=\"UTF-8\")\n",
"Y_train = pd.read_csv(out_file, sep='\\t', header=None, quoting=csv.QUOTE_NONE, nrows=200000, on_bad_lines=\"skip\", encoding=\"UTF-8\")\n",
"\n",
"X_train = X_train[[6, 7]]\n",
"X_train = pd.concat([X_train, Y_train], axis=1)\n",
"X_train = X_train[6] + X_train[0] + X_train[7]\n",
"X_train = X_train.apply(clean)\n",
"vocab_size = 30000\n",
"embed_size = 150\n",
"Dataset = Bigrams(X_train, vocab_size)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1cc73f1e",
"metadata": {},
"outputs": [],
"source": [
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
"model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)\n",
"\n",
"if(not exists('nn_model2.bin')):\n",
" data = DataLoader(Dataset, batch_size=8000)\n",
" optimizer = torch.optim.Adam(model.parameters())\n",
" criterion = torch.nn.NLLLoss()\n",
"\n",
" model.train()\n",
" step = 0\n",
" for i in range(2):\n",
" print(f\" Epoka {i}--------------------------------------------------------\")\n",
" for x, y in data:\n",
" x = x.to(device)\n",
" y = y.to(device)\n",
" optimizer.zero_grad()\n",
" ypredicted = model(x)\n",
" loss = criterion(torch.log(ypredicted), y)\n",
" if step % 100 == 0:\n",
" print(step, loss)\n",
" step += 1\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" torch.save(model.state_dict(), 'nn_model2.bin')\n",
"else:\n",
" model.load_state_dict(torch.load('nn_model2.bin')) \n",
"\n",
"\n",
"vocab = Dataset.vocab\n",
"\n",
"\n",
"# nltk.download('punkt')\n",
"def predict_word(ws):\n",
" ixs = torch.tensor(vocab.forward(ws)).to(device)\n",
" out = model(ixs)\n",
" top = torch.topk(out[0], 8)\n",
" top_indices = top.indices.tolist()\n",
" top_probs = top.values.tolist()\n",
" top_words = vocab.lookup_tokens(top_indices)\n",
" pred_str = \"\"\n",
" for word, prob in list(zip(top_words, top_probs)):\n",
" pred_str += f\"{word}:{prob} \"\n",
"# pred_str += f':0.01'\n",
" return pred_str\n",
"\n",
"\n",
"def word_gap_prediction(file):\n",
" X_test = pd.read_csv(f'{file}/in.tsv.xz', sep='\\t', header=None, quoting=csv.QUOTE_NONE, on_bad_lines='skip', encoding=\"UTF-8\")[6]\n",
" X_test = X_test.apply(clean)\n",
" with open(f'{file}/out.tsv', \"w+\", encoding=\"UTF-8\") as f:\n",
" for row in X_test:\n",
" result = {}\n",
" before = None\n",
" for before in get_words_from_line(clean(str(row)), False):\n",
" pass\n",
" before = [before]\n",
" if(len(before) < 1):\n",
" pred_str = \"a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1\"\n",
" else:\n",
" pred_str = predict_word(before)\n",
" pred_str = pred_str.strip()\n",
" f.write(pred_str + \"\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "682d3528",
"metadata": {},
"outputs": [],
"source": [
"word_gap_prediction(\"dev-0/\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74b9f66c",
"metadata": {},
"outputs": [],
"source": [
"word_gap_prediction(\"test-A/\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}