challenging-america-word-ga.../run.py
2022-04-03 17:50:02 +02:00

128 lines
3.4 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[136]:
import nltk
from nltk import trigrams
from nltk.tokenize import word_tokenize
from collections import defaultdict, Counter
from nltk import ngrams
import pandas as pd
import csv
import re
model = defaultdict(lambda: defaultdict(lambda: 0))
# In[173]:
train_file_in = pd.read_csv("train/in.tsv.xz", sep="\t", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, nrows=200000)
train_file_out = pd.read_csv("train/expected.tsv", sep="\t", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE, nrows=200000)
print("read train file")
# In[174]:
stop_words= nltk.corpus.stopwords.words('english')
def get_20common_2grams(text, n):
outputTrigrams = []
n_grams = ngrams(nltk.tokenize.word_tokenize(text), n)
for grams in n_grams:
outputTrigrams.append(grams)
return outputTrigrams
def get_20common_2grams_no_stop(text, n):
tokenized_world = nltk.tokenize.word_tokenize(text)
stop_words= nltk.corpus.stopwords.words('english')
tokenized_no_stop = [i for i in tokenized_world if i not in stop_words]
n_grams = ngrams(tokenized_no_stop, n)
return n_grams
def predict(word_before, word_after):
prob_list = dict(Counter(model[(word_before, word_after)]).most_common(6)).items()
predictions = []
prob_sum = 0.0
for key, value in prob_list:
prob_sum += value
predictions.append(f'{key}:{value}')
if prob_sum == 0.0:
return 'the:0:2 be:0.2 to:0.2 of:0.15 and:0.15 :0.1'
remaining_prob = 1 - prob_sum
if remaining_prob < 0.01:
predictions.append(f':{0.01}')
return ' '.join(predictions)
# In[175]:
train = train_file_in[[6, 7]]
train = pd.concat([train, train_file_out], axis=1)
train["result"] = train[6] + train[0] + train[7]
# In[ ]:
for index, row in train.iterrows():
text = str(row["result"]).lower().replace('-\\n', '').replace('\\n', ' ')
words = word_tokenize(text)
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
if w1 and w2 and w3:
model[(w2, w3)][w1] += 1
# In[ ]:
print("train model")
for key in model:
total_count = float(sum(model[key].values()))
for value in model[key]:
model[key][value] /= total_count
# In[ ]:
dev_data = pd.read_csv('dev-0/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
test_a_data = pd.read_csv('test-A/in.tsv.xz', sep='\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
# In[ ]:
print("dev_0");
with open('dev-0/out.tsv', 'w', encoding="utf-8") as file:
for index, row in dev_data.iterrows():
text = str(row[7]).lower().replace('-\\n', '').replace('\\n', ' ')
words = word_tokenize(text)
if len(words) < 4:
print(words)
prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
else:
prediction = predict(words[0], words[1])
file.write(prediction + '\n')
print("test_A");
with open('test-A/out.tsv', 'w', encoding="utf-8") as file:
for index, row in test_a_data.iterrows():
text = str(row[7]).lower().replace('-\\n', '').replace('\\n', ' ')
words = word_tokenize(text)
if len(words) < 4:
print(words)
prediction = 'the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1'
else:
prediction = predict(words[0], words[1])
file.write(prediction + '\n')
# In[ ]: