2021-05-15 12:04:19 +02:00
|
|
|
import torch
|
2021-05-15 15:34:10 +02:00
|
|
|
import sys
|
|
|
|
from torch import nn
|
|
|
|
import numpy as np
|
2021-05-15 12:04:19 +02:00
|
|
|
import pandas as pd
|
2021-05-15 15:34:10 +02:00
|
|
|
np.set_printoptions(suppress=False)
|
|
|
|
|
|
|
|
|
|
|
|
class LogisticRegressionModel(nn.Module):
|
|
|
|
def __init__(self, input_dim, output_dim):
|
|
|
|
super(LogisticRegressionModel, self).__init__()
|
|
|
|
self.linear = nn.Linear(input_dim, output_dim)
|
|
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
def forward(self, x):
|
|
|
|
out = self.linear(x)
|
|
|
|
return self.sigmoid(out)
|
|
|
|
|
|
|
|
|
|
|
|
data_train = pd.read_csv("train.csv")
|
|
|
|
data_test = pd.read_csv("test.csv")
|
|
|
|
data_val = pd.read_csv("valid.csv")
|
|
|
|
|
|
|
|
x_train = data_train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
|
|
|
y_train = data_train['DEATH_EVENT'].astype(np.float32)
|
|
|
|
|
|
|
|
x_test = data_test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
|
|
|
y_test = data_test['DEATH_EVENT'].astype(np.float32)
|
|
|
|
|
|
|
|
fTrain = torch.from_numpy(x_train.values)
|
|
|
|
tTrain = torch.from_numpy(y_train.values.reshape(179,1))
|
|
|
|
|
|
|
|
fTest= torch.from_numpy(x_test.values)
|
|
|
|
tTest = torch.from_numpy(y_test.values)
|
|
|
|
|
|
|
|
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 10
|
|
|
|
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
|
|
|
|
learning_rate = 0.001
|
|
|
|
input_dim = 11
|
|
|
|
output_dim = 1
|
|
|
|
|
|
|
|
model = LogisticRegressionModel(input_dim, output_dim)
|
|
|
|
|
|
|
|
criterion = torch.nn.BCELoss(reduction='mean')
|
|
|
|
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
|
|
|
|
|
|
|
for epoch in range(num_epochs):
|
|
|
|
# print ("Epoch #",epoch)
|
|
|
|
model.train()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
# Forward pass
|
|
|
|
y_pred = model(fTrain)
|
|
|
|
# Compute Loss
|
|
|
|
loss = criterion(y_pred, tTrain)
|
|
|
|
# print(loss.item())
|
|
|
|
# Backward pass
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
y_pred = model(fTest)
|
|
|
|
print(y_pred.data)
|
|
|
|
|
|
|
|
torch.save(model.state_dict(), 'DEATH_EVENT.pth')
|