evaluation.py
This commit is contained in:
parent
877975b3c4
commit
f00f35a936
BIN
DEATH_EVENT.pth
BIN
DEATH_EVENT.pth
Binary file not shown.
31
IUM_05.py
31
IUM_05.py
@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import sys
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@ -15,21 +16,21 @@ class LogisticRegressionModel(nn.Module):
|
||||
return self.sigmoid(out)
|
||||
|
||||
|
||||
data_train = pd.read_csv("train.csv")
|
||||
data_test = pd.read_csv("test.csv")
|
||||
data_val = pd.read_csv("valid.csv")
|
||||
train = pd.read_csv("train.csv")
|
||||
test = pd.read_csv("test.csv")
|
||||
valid = pd.read_csv("valid.csv")
|
||||
|
||||
x_train = data_train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||
y_train = data_train['DEATH_EVENT'].astype(np.float32)
|
||||
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||
ytrain = train['DEATH_EVENT'].astype(np.float32)
|
||||
|
||||
x_test = data_test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||
y_test = data_test['DEATH_EVENT'].astype(np.float32)
|
||||
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||
ytest = test['DEATH_EVENT'].astype(np.float32)
|
||||
|
||||
fTrain = torch.from_numpy(x_train.values)
|
||||
tTrain = torch.from_numpy(y_train.values.reshape(179,1))
|
||||
xTrain = torch.from_numpy(xtrain.values)
|
||||
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
|
||||
|
||||
fTest= torch.from_numpy(x_test.values)
|
||||
tTest = torch.from_numpy(y_test.values)
|
||||
xTest = torch.from_numpy(xtest.values)
|
||||
yTest = torch.from_numpy(ytest.values)
|
||||
|
||||
batch_size = 10
|
||||
num_epochs = 5
|
||||
@ -39,7 +40,7 @@ output_dim = 1
|
||||
|
||||
model = LogisticRegressionModel(input_dim, output_dim)
|
||||
|
||||
criterion = torch.nn.BCELoss(reduction='mean')
|
||||
criterion = torch.nn.BCELoss(reduction='mean')
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
@ -47,14 +48,14 @@ for epoch in range(num_epochs):
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
# Forward pass
|
||||
y_pred = model(fTrain)
|
||||
y_pred = model(xTrain)
|
||||
# Compute Loss
|
||||
loss = criterion(y_pred, tTrain)
|
||||
loss = criterion(y_pred, yTrain)
|
||||
# print(loss.item())
|
||||
# Backward pass
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
y_pred = model(fTest)
|
||||
y_pred = model(xTest)
|
||||
print(y_pred.data)
|
||||
|
||||
torch.save(model.state_dict(), 'DEATH_EVENT.pth')
|
||||
|
@ -0,0 +1,45 @@
|
||||
pipeline {
|
||||
agent {
|
||||
dockerfile true
|
||||
}
|
||||
parameters{
|
||||
buildSelector(
|
||||
defaultSelector: lastSuccessful(),
|
||||
description: 'Which build to use for copying artifacts',
|
||||
name: 'WHICH_BUILD_DATA'
|
||||
)
|
||||
buildSelector(
|
||||
defaultSelector: lastSuccessful(),
|
||||
description: 'Which build to use for copying artifacts',
|
||||
name: 'WHICH_BUILD_TRAIN'
|
||||
)
|
||||
}
|
||||
stages {
|
||||
stage('copyArtifacts') {
|
||||
steps {
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 's434732-create-dataset', selector: buildParameter('WHICH_BUILD_DATA')
|
||||
}
|
||||
}
|
||||
stage('Run_script'){
|
||||
steps{
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 's434732-training/master', selector: buildParameter('WHICH_BUILD_TRAIN')
|
||||
sh 'python3 "./evaluation.py" >> result.txt'
|
||||
}
|
||||
}
|
||||
stage('archiveArtifacts') {
|
||||
steps {
|
||||
archiveArtifacts 'result.txt'
|
||||
}
|
||||
}
|
||||
}
|
||||
post {
|
||||
success {
|
||||
mail body: 'SUCCESS EVALUATION', subject: 's434732', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||
}
|
||||
|
||||
failure {
|
||||
mail body: 'FAILURE EVALUATION', subject: 's434732', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||
}
|
||||
|
||||
}
|
||||
}
|
@ -21,12 +21,12 @@ pipeline {
|
||||
)
|
||||
}
|
||||
stages {
|
||||
stage('checkout') {
|
||||
stage('copyArtifacts') {
|
||||
steps {
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 's434732-create-dataset', selector: buildParameter('WHICH_BUILD')
|
||||
}
|
||||
}
|
||||
stage('Docker'){
|
||||
stage('Run_script'){
|
||||
steps{
|
||||
sh 'python3 "./training.py" ${BATCH_SIZE} ${EPOCHS} > model_pred.txt'
|
||||
}
|
||||
@ -40,6 +40,7 @@ pipeline {
|
||||
}
|
||||
post {
|
||||
success {
|
||||
build job: 's434732-evaluation/master'
|
||||
mail body: 'SUCCESS TRAINING', subject: 's434732', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||
}
|
||||
|
||||
|
181
evaluation.py
181
evaluation.py
@ -1,153 +1,54 @@
|
||||
import sys
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import sys
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.data import DataLoader, TensorDataset, random_split
|
||||
from sklearn import preprocessing
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.metrics import f1_score
|
||||
np.set_printoptions(suppress=False)
|
||||
|
||||
|
||||
batch_size = 64
|
||||
|
||||
train = pd.read_csv('train.csv')
|
||||
test = pd.read_csv('test.csv')
|
||||
|
||||
categorical_cols = train.select_dtypes(include=object).columns.values
|
||||
|
||||
input_cols = train.columns.values[1:-1]
|
||||
output_cols = train.columns.values[-1:]
|
||||
class LogisticRegressionModel(nn.Module):
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super(LogisticRegressionModel, self).__init__()
|
||||
self.linear = nn.Linear(input_dim, output_dim)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
def forward(self, x):
|
||||
out = self.linear(x)
|
||||
return self.sigmoid(out)
|
||||
|
||||
|
||||
def dataframe_to_arrays(dataframe):
|
||||
# Make a copy of the original dataframe
|
||||
dataframe1 = dataframe.copy(deep=True)
|
||||
# Convert non-numeric categorical columns to numbers
|
||||
for col in categorical_cols:
|
||||
dataframe1[col] = dataframe1[col].astype('category').cat.codes
|
||||
# Extract input & outupts as numpy arrays
|
||||
train = pd.read_csv("train.csv")
|
||||
test = pd.read_csv("test.csv")
|
||||
valid = pd.read_csv("valid.csv")
|
||||
|
||||
min_max_scaler = preprocessing.MinMaxScaler()
|
||||
x_scaled = min_max_scaler.fit_transform(dataframe1)
|
||||
dataframe1 = pd.DataFrame(x_scaled, columns = dataframe1.columns)
|
||||
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||
ytrain = train['DEATH_EVENT'].astype(np.float32)
|
||||
|
||||
inputs_array = dataframe1[input_cols].to_numpy()
|
||||
targets_array = dataframe1[output_cols].to_numpy()
|
||||
return inputs_array, targets_array
|
||||
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||
ytest = test['DEATH_EVENT'].astype(np.float32)
|
||||
|
||||
inputs_array_training, targets_array_training = dataframe_to_arrays(train)
|
||||
xTrain = torch.from_numpy(xtrain.values)
|
||||
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
|
||||
|
||||
xTest = torch.from_numpy(xtest.values)
|
||||
yTest = torch.from_numpy(ytest.values)
|
||||
|
||||
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 10
|
||||
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
|
||||
learning_rate = 0.002
|
||||
input_dim = 11
|
||||
output_dim = 1
|
||||
|
||||
model = LogisticRegressionModel(input_dim, output_dim)
|
||||
model.load_state_dict(torch.load('DEATH_EVENT.pth'))
|
||||
criterion = torch.nn.BCELoss(reduction='mean')
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||
|
||||
|
||||
inputs_array_testing, targets_array_testing = dataframe_to_arrays(test)
|
||||
prediction= model(xTest)
|
||||
|
||||
|
||||
inputs_training = torch.from_numpy(inputs_array_training).type(torch.float32)
|
||||
targets_training = torch.from_numpy(targets_array_training).type(torch.float32)
|
||||
|
||||
inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
|
||||
targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
|
||||
|
||||
train_dataset = TensorDataset(inputs_training, targets_training)
|
||||
val_dataset = TensorDataset(inputs_testing, targets_testing)
|
||||
|
||||
train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
|
||||
val_loader = DataLoader(val_dataset, batch_size*2)
|
||||
|
||||
input_size = len(input_cols)
|
||||
output_size = len(output_cols)
|
||||
|
||||
|
||||
|
||||
class FootbalModel(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.linear = nn.Linear(input_size, output_size)
|
||||
|
||||
def forward(self, xb):
|
||||
out = self.linear(xb)
|
||||
return out
|
||||
|
||||
def training_step(self, batch):
|
||||
inputs, targets = batch
|
||||
# Generate predictions
|
||||
out = self(inputs)
|
||||
# Calcuate loss
|
||||
# loss = F.l1_loss(out, targets)
|
||||
loss = F.mse_loss(out, targets)
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch):
|
||||
inputs, targets = batch
|
||||
# Generate predictions
|
||||
out = self(inputs)
|
||||
# Calculate loss
|
||||
# loss = F.l1_loss(out, targets)
|
||||
loss = F.mse_loss(out, targets)
|
||||
return {'val_loss': loss.detach()}
|
||||
|
||||
def validation_epoch_end(self, outputs):
|
||||
batch_losses = [x['val_loss'] for x in outputs]
|
||||
epoch_loss = torch.stack(batch_losses).mean()
|
||||
return {'val_loss': epoch_loss.item()}
|
||||
|
||||
def epoch_end(self, epoch, result, num_epochs):
|
||||
# Print result every 20th epoch
|
||||
if (epoch + 1) % 20 == 0 or epoch == num_epochs - 1:
|
||||
print("Epoch [{}], val_loss: {:.4f}".format(epoch + 1, result['val_loss']))
|
||||
|
||||
model = FootbalModel()
|
||||
model.load_state_dict(torch.load('FootballModel.pth'))
|
||||
list(model.parameters())
|
||||
|
||||
|
||||
# def evaluate(model, val_loader):
|
||||
# outputs = [model.validation_step(batch) for batch in val_loader]
|
||||
# return model.validation_epoch_end(outputs)
|
||||
#
|
||||
# def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
|
||||
# history = []
|
||||
# optimizer = opt_func(model.parameters(), lr)
|
||||
# for epoch in range(epochs):
|
||||
# # Training Phase
|
||||
# for batch in train_loader:
|
||||
# loss = model.training_step(batch)
|
||||
# loss.backward()
|
||||
# optimizer.step()
|
||||
# optimizer.zero_grad()
|
||||
# # Validation phase
|
||||
# result = evaluate(model, val_loader)
|
||||
# model.epoch_end(epoch, result, epochs)
|
||||
# history.append(result)
|
||||
# return history
|
||||
#
|
||||
#
|
||||
# result = evaluate(model, val_loader) # Use the the evaluate function
|
||||
#
|
||||
# # epochs = 100
|
||||
# lr = 1e-6
|
||||
# history3 = fit(epochs, lr, model, train_loader, val_loader)
|
||||
#
|
||||
def predict_single(input, target, model):
|
||||
inputs = input.unsqueeze(0)
|
||||
predictions = model(input)
|
||||
print(type(predictions))# fill this
|
||||
prediction = predictions[0].detach()
|
||||
print(prediction)
|
||||
print("Prediction:", prediction)
|
||||
if prediction >= 0.5:
|
||||
print('Neutral')
|
||||
else:
|
||||
print('not neutral')
|
||||
|
||||
# inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
|
||||
# targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
|
||||
|
||||
# inputs = input.unsqueeze(0)
|
||||
# predictions = model(targets_testing)
|
||||
|
||||
|
||||
for i in range(len(val_dataset)):
|
||||
input, target = val_dataset[i]
|
||||
predict_single(input, target, model)
|
||||
|
||||
|
||||
# torch.save(model.state_dict(), 'FootballModel.pth')
|
||||
accuracy_score = accuracy_score(yTest, np.argmax(prediction.detach().numpy(), axis=1))
|
||||
print("accuracy_score", accuracy_score)
|
||||
print("F1", f1_score(yTest, np.argmax(prediction.detach().numpy(), axis=1), average=None))
|
30
training.py
30
training.py
@ -16,25 +16,25 @@ class LogisticRegressionModel(nn.Module):
|
||||
return self.sigmoid(out)
|
||||
|
||||
|
||||
data_train = pd.read_csv("train.csv")
|
||||
data_test = pd.read_csv("test.csv")
|
||||
data_val = pd.read_csv("valid.csv")
|
||||
train = pd.read_csv("train.csv")
|
||||
test = pd.read_csv("test.csv")
|
||||
valid = pd.read_csv("valid.csv")
|
||||
|
||||
x_train = data_train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||
y_train = data_train['DEATH_EVENT'].astype(np.float32)
|
||||
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||
ytrain = train['DEATH_EVENT'].astype(np.float32)
|
||||
|
||||
x_test = data_test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||
y_test = data_test['DEATH_EVENT'].astype(np.float32)
|
||||
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||
ytest = test['DEATH_EVENT'].astype(np.float32)
|
||||
|
||||
fTrain = torch.from_numpy(x_train.values)
|
||||
tTrain = torch.from_numpy(y_train.values.reshape(179,1))
|
||||
xTrain = torch.from_numpy(xtrain.values)
|
||||
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
|
||||
|
||||
fTest= torch.from_numpy(x_test.values)
|
||||
tTest = torch.from_numpy(y_test.values)
|
||||
xTest = torch.from_numpy(xtest.values)
|
||||
yTest = torch.from_numpy(ytest.values)
|
||||
|
||||
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 10
|
||||
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
|
||||
learning_rate = 0.001
|
||||
learning_rate = 0.002
|
||||
input_dim = 11
|
||||
output_dim = 1
|
||||
|
||||
@ -48,14 +48,14 @@ for epoch in range(num_epochs):
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
# Forward pass
|
||||
y_pred = model(fTrain)
|
||||
y_pred = model(xTrain)
|
||||
# Compute Loss
|
||||
loss = criterion(y_pred, tTrain)
|
||||
loss = criterion(y_pred, yTrain)
|
||||
# print(loss.item())
|
||||
# Backward pass
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
y_pred = model(fTest)
|
||||
y_pred = model(xTest)
|
||||
print(y_pred.data)
|
||||
|
||||
torch.save(model.state_dict(), 'DEATH_EVENT.pth')
|
||||
|
Loading…
Reference in New Issue
Block a user