evaluation.py
This commit is contained in:
parent
877975b3c4
commit
f00f35a936
BIN
DEATH_EVENT.pth
BIN
DEATH_EVENT.pth
Binary file not shown.
29
IUM_05.py
29
IUM_05.py
@ -1,4 +1,5 @@
|
|||||||
import torch
|
import torch
|
||||||
|
import sys
|
||||||
from torch import nn
|
from torch import nn
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -15,21 +16,21 @@ class LogisticRegressionModel(nn.Module):
|
|||||||
return self.sigmoid(out)
|
return self.sigmoid(out)
|
||||||
|
|
||||||
|
|
||||||
data_train = pd.read_csv("train.csv")
|
train = pd.read_csv("train.csv")
|
||||||
data_test = pd.read_csv("test.csv")
|
test = pd.read_csv("test.csv")
|
||||||
data_val = pd.read_csv("valid.csv")
|
valid = pd.read_csv("valid.csv")
|
||||||
|
|
||||||
x_train = data_train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||||
y_train = data_train['DEATH_EVENT'].astype(np.float32)
|
ytrain = train['DEATH_EVENT'].astype(np.float32)
|
||||||
|
|
||||||
x_test = data_test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||||
y_test = data_test['DEATH_EVENT'].astype(np.float32)
|
ytest = test['DEATH_EVENT'].astype(np.float32)
|
||||||
|
|
||||||
fTrain = torch.from_numpy(x_train.values)
|
xTrain = torch.from_numpy(xtrain.values)
|
||||||
tTrain = torch.from_numpy(y_train.values.reshape(179,1))
|
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
|
||||||
|
|
||||||
fTest= torch.from_numpy(x_test.values)
|
xTest = torch.from_numpy(xtest.values)
|
||||||
tTest = torch.from_numpy(y_test.values)
|
yTest = torch.from_numpy(ytest.values)
|
||||||
|
|
||||||
batch_size = 10
|
batch_size = 10
|
||||||
num_epochs = 5
|
num_epochs = 5
|
||||||
@ -47,14 +48,14 @@ for epoch in range(num_epochs):
|
|||||||
model.train()
|
model.train()
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
# Forward pass
|
# Forward pass
|
||||||
y_pred = model(fTrain)
|
y_pred = model(xTrain)
|
||||||
# Compute Loss
|
# Compute Loss
|
||||||
loss = criterion(y_pred, tTrain)
|
loss = criterion(y_pred, yTrain)
|
||||||
# print(loss.item())
|
# print(loss.item())
|
||||||
# Backward pass
|
# Backward pass
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
y_pred = model(fTest)
|
y_pred = model(xTest)
|
||||||
print(y_pred.data)
|
print(y_pred.data)
|
||||||
|
|
||||||
torch.save(model.state_dict(), 'DEATH_EVENT.pth')
|
torch.save(model.state_dict(), 'DEATH_EVENT.pth')
|
||||||
|
@ -0,0 +1,45 @@
|
|||||||
|
pipeline {
|
||||||
|
agent {
|
||||||
|
dockerfile true
|
||||||
|
}
|
||||||
|
parameters{
|
||||||
|
buildSelector(
|
||||||
|
defaultSelector: lastSuccessful(),
|
||||||
|
description: 'Which build to use for copying artifacts',
|
||||||
|
name: 'WHICH_BUILD_DATA'
|
||||||
|
)
|
||||||
|
buildSelector(
|
||||||
|
defaultSelector: lastSuccessful(),
|
||||||
|
description: 'Which build to use for copying artifacts',
|
||||||
|
name: 'WHICH_BUILD_TRAIN'
|
||||||
|
)
|
||||||
|
}
|
||||||
|
stages {
|
||||||
|
stage('copyArtifacts') {
|
||||||
|
steps {
|
||||||
|
copyArtifacts fingerprintArtifacts: true, projectName: 's434732-create-dataset', selector: buildParameter('WHICH_BUILD_DATA')
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('Run_script'){
|
||||||
|
steps{
|
||||||
|
copyArtifacts fingerprintArtifacts: true, projectName: 's434732-training/master', selector: buildParameter('WHICH_BUILD_TRAIN')
|
||||||
|
sh 'python3 "./evaluation.py" >> result.txt'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
stage('archiveArtifacts') {
|
||||||
|
steps {
|
||||||
|
archiveArtifacts 'result.txt'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
post {
|
||||||
|
success {
|
||||||
|
mail body: 'SUCCESS EVALUATION', subject: 's434732', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||||
|
}
|
||||||
|
|
||||||
|
failure {
|
||||||
|
mail body: 'FAILURE EVALUATION', subject: 's434732', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
@ -21,12 +21,12 @@ pipeline {
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
stages {
|
stages {
|
||||||
stage('checkout') {
|
stage('copyArtifacts') {
|
||||||
steps {
|
steps {
|
||||||
copyArtifacts fingerprintArtifacts: true, projectName: 's434732-create-dataset', selector: buildParameter('WHICH_BUILD')
|
copyArtifacts fingerprintArtifacts: true, projectName: 's434732-create-dataset', selector: buildParameter('WHICH_BUILD')
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
stage('Docker'){
|
stage('Run_script'){
|
||||||
steps{
|
steps{
|
||||||
sh 'python3 "./training.py" ${BATCH_SIZE} ${EPOCHS} > model_pred.txt'
|
sh 'python3 "./training.py" ${BATCH_SIZE} ${EPOCHS} > model_pred.txt'
|
||||||
}
|
}
|
||||||
@ -40,6 +40,7 @@ pipeline {
|
|||||||
}
|
}
|
||||||
post {
|
post {
|
||||||
success {
|
success {
|
||||||
|
build job: 's434732-evaluation/master'
|
||||||
mail body: 'SUCCESS TRAINING', subject: 's434732', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
mail body: 'SUCCESS TRAINING', subject: 's434732', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||||
}
|
}
|
||||||
|
|
||||||
|
181
evaluation.py
181
evaluation.py
@ -1,153 +1,54 @@
|
|||||||
import sys
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import sys
|
||||||
|
from torch import nn
|
||||||
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import torch.nn.functional as F
|
from sklearn.metrics import accuracy_score
|
||||||
from torch.utils.data import DataLoader, TensorDataset, random_split
|
from sklearn.metrics import f1_score
|
||||||
from sklearn import preprocessing
|
np.set_printoptions(suppress=False)
|
||||||
|
|
||||||
|
|
||||||
batch_size = 64
|
class LogisticRegressionModel(nn.Module):
|
||||||
|
def __init__(self, input_dim, output_dim):
|
||||||
train = pd.read_csv('train.csv')
|
super(LogisticRegressionModel, self).__init__()
|
||||||
test = pd.read_csv('test.csv')
|
self.linear = nn.Linear(input_dim, output_dim)
|
||||||
|
self.sigmoid = nn.Sigmoid()
|
||||||
categorical_cols = train.select_dtypes(include=object).columns.values
|
def forward(self, x):
|
||||||
|
out = self.linear(x)
|
||||||
input_cols = train.columns.values[1:-1]
|
return self.sigmoid(out)
|
||||||
output_cols = train.columns.values[-1:]
|
|
||||||
|
|
||||||
|
|
||||||
def dataframe_to_arrays(dataframe):
|
train = pd.read_csv("train.csv")
|
||||||
# Make a copy of the original dataframe
|
test = pd.read_csv("test.csv")
|
||||||
dataframe1 = dataframe.copy(deep=True)
|
valid = pd.read_csv("valid.csv")
|
||||||
# Convert non-numeric categorical columns to numbers
|
|
||||||
for col in categorical_cols:
|
|
||||||
dataframe1[col] = dataframe1[col].astype('category').cat.codes
|
|
||||||
# Extract input & outupts as numpy arrays
|
|
||||||
|
|
||||||
min_max_scaler = preprocessing.MinMaxScaler()
|
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||||
x_scaled = min_max_scaler.fit_transform(dataframe1)
|
ytrain = train['DEATH_EVENT'].astype(np.float32)
|
||||||
dataframe1 = pd.DataFrame(x_scaled, columns = dataframe1.columns)
|
|
||||||
|
|
||||||
inputs_array = dataframe1[input_cols].to_numpy()
|
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||||
targets_array = dataframe1[output_cols].to_numpy()
|
ytest = test['DEATH_EVENT'].astype(np.float32)
|
||||||
return inputs_array, targets_array
|
|
||||||
|
|
||||||
inputs_array_training, targets_array_training = dataframe_to_arrays(train)
|
xTrain = torch.from_numpy(xtrain.values)
|
||||||
|
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
|
||||||
|
|
||||||
|
xTest = torch.from_numpy(xtest.values)
|
||||||
|
yTest = torch.from_numpy(ytest.values)
|
||||||
|
|
||||||
|
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 10
|
||||||
|
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
|
||||||
|
learning_rate = 0.002
|
||||||
|
input_dim = 11
|
||||||
|
output_dim = 1
|
||||||
|
|
||||||
|
model = LogisticRegressionModel(input_dim, output_dim)
|
||||||
|
model.load_state_dict(torch.load('DEATH_EVENT.pth'))
|
||||||
|
criterion = torch.nn.BCELoss(reduction='mean')
|
||||||
|
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||||
|
|
||||||
|
|
||||||
inputs_array_testing, targets_array_testing = dataframe_to_arrays(test)
|
prediction= model(xTest)
|
||||||
|
|
||||||
|
|
||||||
inputs_training = torch.from_numpy(inputs_array_training).type(torch.float32)
|
accuracy_score = accuracy_score(yTest, np.argmax(prediction.detach().numpy(), axis=1))
|
||||||
targets_training = torch.from_numpy(targets_array_training).type(torch.float32)
|
print("accuracy_score", accuracy_score)
|
||||||
|
print("F1", f1_score(yTest, np.argmax(prediction.detach().numpy(), axis=1), average=None))
|
||||||
inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
|
|
||||||
targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
|
|
||||||
|
|
||||||
train_dataset = TensorDataset(inputs_training, targets_training)
|
|
||||||
val_dataset = TensorDataset(inputs_testing, targets_testing)
|
|
||||||
|
|
||||||
train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
|
|
||||||
val_loader = DataLoader(val_dataset, batch_size*2)
|
|
||||||
|
|
||||||
input_size = len(input_cols)
|
|
||||||
output_size = len(output_cols)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class FootbalModel(nn.Module):
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__()
|
|
||||||
self.linear = nn.Linear(input_size, output_size)
|
|
||||||
|
|
||||||
def forward(self, xb):
|
|
||||||
out = self.linear(xb)
|
|
||||||
return out
|
|
||||||
|
|
||||||
def training_step(self, batch):
|
|
||||||
inputs, targets = batch
|
|
||||||
# Generate predictions
|
|
||||||
out = self(inputs)
|
|
||||||
# Calcuate loss
|
|
||||||
# loss = F.l1_loss(out, targets)
|
|
||||||
loss = F.mse_loss(out, targets)
|
|
||||||
return loss
|
|
||||||
|
|
||||||
def validation_step(self, batch):
|
|
||||||
inputs, targets = batch
|
|
||||||
# Generate predictions
|
|
||||||
out = self(inputs)
|
|
||||||
# Calculate loss
|
|
||||||
# loss = F.l1_loss(out, targets)
|
|
||||||
loss = F.mse_loss(out, targets)
|
|
||||||
return {'val_loss': loss.detach()}
|
|
||||||
|
|
||||||
def validation_epoch_end(self, outputs):
|
|
||||||
batch_losses = [x['val_loss'] for x in outputs]
|
|
||||||
epoch_loss = torch.stack(batch_losses).mean()
|
|
||||||
return {'val_loss': epoch_loss.item()}
|
|
||||||
|
|
||||||
def epoch_end(self, epoch, result, num_epochs):
|
|
||||||
# Print result every 20th epoch
|
|
||||||
if (epoch + 1) % 20 == 0 or epoch == num_epochs - 1:
|
|
||||||
print("Epoch [{}], val_loss: {:.4f}".format(epoch + 1, result['val_loss']))
|
|
||||||
|
|
||||||
model = FootbalModel()
|
|
||||||
model.load_state_dict(torch.load('FootballModel.pth'))
|
|
||||||
list(model.parameters())
|
|
||||||
|
|
||||||
|
|
||||||
# def evaluate(model, val_loader):
|
|
||||||
# outputs = [model.validation_step(batch) for batch in val_loader]
|
|
||||||
# return model.validation_epoch_end(outputs)
|
|
||||||
#
|
|
||||||
# def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
|
|
||||||
# history = []
|
|
||||||
# optimizer = opt_func(model.parameters(), lr)
|
|
||||||
# for epoch in range(epochs):
|
|
||||||
# # Training Phase
|
|
||||||
# for batch in train_loader:
|
|
||||||
# loss = model.training_step(batch)
|
|
||||||
# loss.backward()
|
|
||||||
# optimizer.step()
|
|
||||||
# optimizer.zero_grad()
|
|
||||||
# # Validation phase
|
|
||||||
# result = evaluate(model, val_loader)
|
|
||||||
# model.epoch_end(epoch, result, epochs)
|
|
||||||
# history.append(result)
|
|
||||||
# return history
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# result = evaluate(model, val_loader) # Use the the evaluate function
|
|
||||||
#
|
|
||||||
# # epochs = 100
|
|
||||||
# lr = 1e-6
|
|
||||||
# history3 = fit(epochs, lr, model, train_loader, val_loader)
|
|
||||||
#
|
|
||||||
def predict_single(input, target, model):
|
|
||||||
inputs = input.unsqueeze(0)
|
|
||||||
predictions = model(input)
|
|
||||||
print(type(predictions))# fill this
|
|
||||||
prediction = predictions[0].detach()
|
|
||||||
print(prediction)
|
|
||||||
print("Prediction:", prediction)
|
|
||||||
if prediction >= 0.5:
|
|
||||||
print('Neutral')
|
|
||||||
else:
|
|
||||||
print('not neutral')
|
|
||||||
|
|
||||||
# inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
|
|
||||||
# targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
|
|
||||||
|
|
||||||
# inputs = input.unsqueeze(0)
|
|
||||||
# predictions = model(targets_testing)
|
|
||||||
|
|
||||||
|
|
||||||
for i in range(len(val_dataset)):
|
|
||||||
input, target = val_dataset[i]
|
|
||||||
predict_single(input, target, model)
|
|
||||||
|
|
||||||
|
|
||||||
# torch.save(model.state_dict(), 'FootballModel.pth')
|
|
30
training.py
30
training.py
@ -16,25 +16,25 @@ class LogisticRegressionModel(nn.Module):
|
|||||||
return self.sigmoid(out)
|
return self.sigmoid(out)
|
||||||
|
|
||||||
|
|
||||||
data_train = pd.read_csv("train.csv")
|
train = pd.read_csv("train.csv")
|
||||||
data_test = pd.read_csv("test.csv")
|
test = pd.read_csv("test.csv")
|
||||||
data_val = pd.read_csv("valid.csv")
|
valid = pd.read_csv("valid.csv")
|
||||||
|
|
||||||
x_train = data_train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||||
y_train = data_train['DEATH_EVENT'].astype(np.float32)
|
ytrain = train['DEATH_EVENT'].astype(np.float32)
|
||||||
|
|
||||||
x_test = data_test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
||||||
y_test = data_test['DEATH_EVENT'].astype(np.float32)
|
ytest = test['DEATH_EVENT'].astype(np.float32)
|
||||||
|
|
||||||
fTrain = torch.from_numpy(x_train.values)
|
xTrain = torch.from_numpy(xtrain.values)
|
||||||
tTrain = torch.from_numpy(y_train.values.reshape(179,1))
|
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
|
||||||
|
|
||||||
fTest= torch.from_numpy(x_test.values)
|
xTest = torch.from_numpy(xtest.values)
|
||||||
tTest = torch.from_numpy(y_test.values)
|
yTest = torch.from_numpy(ytest.values)
|
||||||
|
|
||||||
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 10
|
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 10
|
||||||
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
|
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
|
||||||
learning_rate = 0.001
|
learning_rate = 0.002
|
||||||
input_dim = 11
|
input_dim = 11
|
||||||
output_dim = 1
|
output_dim = 1
|
||||||
|
|
||||||
@ -48,14 +48,14 @@ for epoch in range(num_epochs):
|
|||||||
model.train()
|
model.train()
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
# Forward pass
|
# Forward pass
|
||||||
y_pred = model(fTrain)
|
y_pred = model(xTrain)
|
||||||
# Compute Loss
|
# Compute Loss
|
||||||
loss = criterion(y_pred, tTrain)
|
loss = criterion(y_pred, yTrain)
|
||||||
# print(loss.item())
|
# print(loss.item())
|
||||||
# Backward pass
|
# Backward pass
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
y_pred = model(fTest)
|
y_pred = model(xTest)
|
||||||
print(y_pred.data)
|
print(y_pred.data)
|
||||||
|
|
||||||
torch.save(model.state_dict(), 'DEATH_EVENT.pth')
|
torch.save(model.state_dict(), 'DEATH_EVENT.pth')
|
||||||
|
Loading…
Reference in New Issue
Block a user