evaluation.py
All checks were successful
s434732-evaluation/pipeline/head This commit looks good
s434732-training/pipeline/head This commit looks good

This commit is contained in:
s434732 2021-05-15 15:54:08 +02:00
parent 877975b3c4
commit f00f35a936
6 changed files with 120 additions and 172 deletions

Binary file not shown.

View File

@ -1,4 +1,5 @@
import torch
import sys
from torch import nn
import numpy as np
import pandas as pd
@ -15,21 +16,21 @@ class LogisticRegressionModel(nn.Module):
return self.sigmoid(out)
data_train = pd.read_csv("train.csv")
data_test = pd.read_csv("test.csv")
data_val = pd.read_csv("valid.csv")
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")
valid = pd.read_csv("valid.csv")
x_train = data_train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
y_train = data_train['DEATH_EVENT'].astype(np.float32)
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
ytrain = train['DEATH_EVENT'].astype(np.float32)
x_test = data_test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
y_test = data_test['DEATH_EVENT'].astype(np.float32)
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
ytest = test['DEATH_EVENT'].astype(np.float32)
fTrain = torch.from_numpy(x_train.values)
tTrain = torch.from_numpy(y_train.values.reshape(179,1))
xTrain = torch.from_numpy(xtrain.values)
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
fTest= torch.from_numpy(x_test.values)
tTest = torch.from_numpy(y_test.values)
xTest = torch.from_numpy(xtest.values)
yTest = torch.from_numpy(ytest.values)
batch_size = 10
num_epochs = 5
@ -47,14 +48,14 @@ for epoch in range(num_epochs):
model.train()
optimizer.zero_grad()
# Forward pass
y_pred = model(fTrain)
y_pred = model(xTrain)
# Compute Loss
loss = criterion(y_pred, tTrain)
loss = criterion(y_pred, yTrain)
# print(loss.item())
# Backward pass
loss.backward()
optimizer.step()
y_pred = model(fTest)
y_pred = model(xTest)
print(y_pred.data)
torch.save(model.state_dict(), 'DEATH_EVENT.pth')

View File

@ -0,0 +1,45 @@
pipeline {
agent {
dockerfile true
}
parameters{
buildSelector(
defaultSelector: lastSuccessful(),
description: 'Which build to use for copying artifacts',
name: 'WHICH_BUILD_DATA'
)
buildSelector(
defaultSelector: lastSuccessful(),
description: 'Which build to use for copying artifacts',
name: 'WHICH_BUILD_TRAIN'
)
}
stages {
stage('copyArtifacts') {
steps {
copyArtifacts fingerprintArtifacts: true, projectName: 's434732-create-dataset', selector: buildParameter('WHICH_BUILD_DATA')
}
}
stage('Run_script'){
steps{
copyArtifacts fingerprintArtifacts: true, projectName: 's434732-training/master', selector: buildParameter('WHICH_BUILD_TRAIN')
sh 'python3 "./evaluation.py" >> result.txt'
}
}
stage('archiveArtifacts') {
steps {
archiveArtifacts 'result.txt'
}
}
}
post {
success {
mail body: 'SUCCESS EVALUATION', subject: 's434732', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
}
failure {
mail body: 'FAILURE EVALUATION', subject: 's434732', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
}
}
}

View File

@ -21,12 +21,12 @@ pipeline {
)
}
stages {
stage('checkout') {
stage('copyArtifacts') {
steps {
copyArtifacts fingerprintArtifacts: true, projectName: 's434732-create-dataset', selector: buildParameter('WHICH_BUILD')
}
}
stage('Docker'){
stage('Run_script'){
steps{
sh 'python3 "./training.py" ${BATCH_SIZE} ${EPOCHS} > model_pred.txt'
}
@ -40,6 +40,7 @@ pipeline {
}
post {
success {
build job: 's434732-evaluation/master'
mail body: 'SUCCESS TRAINING', subject: 's434732', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
}

View File

@ -1,153 +1,54 @@
import sys
import torch
import torch.nn as nn
import sys
from torch import nn
import numpy as np
import pandas as pd
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset, random_split
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
np.set_printoptions(suppress=False)
batch_size = 64
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
categorical_cols = train.select_dtypes(include=object).columns.values
input_cols = train.columns.values[1:-1]
output_cols = train.columns.values[-1:]
class LogisticRegressionModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear(x)
return self.sigmoid(out)
def dataframe_to_arrays(dataframe):
# Make a copy of the original dataframe
dataframe1 = dataframe.copy(deep=True)
# Convert non-numeric categorical columns to numbers
for col in categorical_cols:
dataframe1[col] = dataframe1[col].astype('category').cat.codes
# Extract input & outupts as numpy arrays
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")
valid = pd.read_csv("valid.csv")
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(dataframe1)
dataframe1 = pd.DataFrame(x_scaled, columns = dataframe1.columns)
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
ytrain = train['DEATH_EVENT'].astype(np.float32)
inputs_array = dataframe1[input_cols].to_numpy()
targets_array = dataframe1[output_cols].to_numpy()
return inputs_array, targets_array
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
ytest = test['DEATH_EVENT'].astype(np.float32)
inputs_array_training, targets_array_training = dataframe_to_arrays(train)
xTrain = torch.from_numpy(xtrain.values)
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
xTest = torch.from_numpy(xtest.values)
yTest = torch.from_numpy(ytest.values)
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 10
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
learning_rate = 0.002
input_dim = 11
output_dim = 1
model = LogisticRegressionModel(input_dim, output_dim)
model.load_state_dict(torch.load('DEATH_EVENT.pth'))
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
inputs_array_testing, targets_array_testing = dataframe_to_arrays(test)
prediction= model(xTest)
inputs_training = torch.from_numpy(inputs_array_training).type(torch.float32)
targets_training = torch.from_numpy(targets_array_training).type(torch.float32)
inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
train_dataset = TensorDataset(inputs_training, targets_training)
val_dataset = TensorDataset(inputs_testing, targets_testing)
train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size*2)
input_size = len(input_cols)
output_size = len(output_cols)
class FootbalModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(input_size, output_size)
def forward(self, xb):
out = self.linear(xb)
return out
def training_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calcuate loss
# loss = F.l1_loss(out, targets)
loss = F.mse_loss(out, targets)
return loss
def validation_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calculate loss
# loss = F.l1_loss(out, targets)
loss = F.mse_loss(out, targets)
return {'val_loss': loss.detach()}
def validation_epoch_end(self, outputs):
batch_losses = [x['val_loss'] for x in outputs]
epoch_loss = torch.stack(batch_losses).mean()
return {'val_loss': epoch_loss.item()}
def epoch_end(self, epoch, result, num_epochs):
# Print result every 20th epoch
if (epoch + 1) % 20 == 0 or epoch == num_epochs - 1:
print("Epoch [{}], val_loss: {:.4f}".format(epoch + 1, result['val_loss']))
model = FootbalModel()
model.load_state_dict(torch.load('FootballModel.pth'))
list(model.parameters())
# def evaluate(model, val_loader):
# outputs = [model.validation_step(batch) for batch in val_loader]
# return model.validation_epoch_end(outputs)
#
# def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
# history = []
# optimizer = opt_func(model.parameters(), lr)
# for epoch in range(epochs):
# # Training Phase
# for batch in train_loader:
# loss = model.training_step(batch)
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# # Validation phase
# result = evaluate(model, val_loader)
# model.epoch_end(epoch, result, epochs)
# history.append(result)
# return history
#
#
# result = evaluate(model, val_loader) # Use the the evaluate function
#
# # epochs = 100
# lr = 1e-6
# history3 = fit(epochs, lr, model, train_loader, val_loader)
#
def predict_single(input, target, model):
inputs = input.unsqueeze(0)
predictions = model(input)
print(type(predictions))# fill this
prediction = predictions[0].detach()
print(prediction)
print("Prediction:", prediction)
if prediction >= 0.5:
print('Neutral')
else:
print('not neutral')
# inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
# targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
# inputs = input.unsqueeze(0)
# predictions = model(targets_testing)
for i in range(len(val_dataset)):
input, target = val_dataset[i]
predict_single(input, target, model)
# torch.save(model.state_dict(), 'FootballModel.pth')
accuracy_score = accuracy_score(yTest, np.argmax(prediction.detach().numpy(), axis=1))
print("accuracy_score", accuracy_score)
print("F1", f1_score(yTest, np.argmax(prediction.detach().numpy(), axis=1), average=None))

View File

@ -16,25 +16,25 @@ class LogisticRegressionModel(nn.Module):
return self.sigmoid(out)
data_train = pd.read_csv("train.csv")
data_test = pd.read_csv("test.csv")
data_val = pd.read_csv("valid.csv")
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")
valid = pd.read_csv("valid.csv")
x_train = data_train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
y_train = data_train['DEATH_EVENT'].astype(np.float32)
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
ytrain = train['DEATH_EVENT'].astype(np.float32)
x_test = data_test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
y_test = data_test['DEATH_EVENT'].astype(np.float32)
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
ytest = test['DEATH_EVENT'].astype(np.float32)
fTrain = torch.from_numpy(x_train.values)
tTrain = torch.from_numpy(y_train.values.reshape(179,1))
xTrain = torch.from_numpy(xtrain.values)
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
fTest= torch.from_numpy(x_test.values)
tTest = torch.from_numpy(y_test.values)
xTest = torch.from_numpy(xtest.values)
yTest = torch.from_numpy(ytest.values)
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 10
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
learning_rate = 0.001
learning_rate = 0.002
input_dim = 11
output_dim = 1
@ -48,14 +48,14 @@ for epoch in range(num_epochs):
model.train()
optimizer.zero_grad()
# Forward pass
y_pred = model(fTrain)
y_pred = model(xTrain)
# Compute Loss
loss = criterion(y_pred, tTrain)
loss = criterion(y_pred, yTrain)
# print(loss.item())
# Backward pass
loss.backward()
optimizer.step()
y_pred = model(fTest)
y_pred = model(xTest)
print(y_pred.data)
torch.save(model.state_dict(), 'DEATH_EVENT.pth')