import torch from torch import nn import numpy as np import pandas as pd from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sacred import Experiment from sacred.observers import MongoObserver np.set_printoptions(suppress=False) ex = Experiment("434732-mongo", interactive=False, save_git_info=False) ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred')) @ex.config def my_config(): epochs = 5 batch_size = 10 class LogisticRegressionModel(nn.Module): def __init__(self, input_dim, output_dim): super(LogisticRegressionModel, self).__init__() self.linear = nn.Linear(input_dim, output_dim) self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.linear(x) return self.sigmoid(out) @ex.capture def readAndtrain(epochs, batch_size, _run): train = pd.read_csv("train.csv") test = pd.read_csv("test.csv") xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32) ytrain = train['DEATH_EVENT'].astype(np.float32) xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32) ytest = test['DEATH_EVENT'].astype(np.float32) xTrain = torch.from_numpy(xtrain.values) yTrain = torch.from_numpy(ytrain.values.reshape(179,1)) xTest = torch.from_numpy(xtest.values) yTest = torch.from_numpy(ytest.values) learning_rate = 0.002 input_dim = 11 output_dim = 1 _run.log_scalar("Batch", str(batch_size)) _run.log_scalar("epoch", str(epochs)) model = LogisticRegressionModel(input_dim, output_dim) model.load_state_dict(torch.load('DEATH_EVENT.pth')) criterion = torch.nn.BCELoss(reduction='mean') optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) for epoch in range(epochs): # print ("Epoch #",epoch) model.train() optimizer.zero_grad() # Forward pass y_pred = model(xTrain) # Compute Loss loss = criterion(y_pred, yTrain) # print(loss.item()) # Backward pass loss.backward() optimizer.step() _run.log_scalar("Lost", str(loss.item())) torch.save(model.state_dict(), 'DEATH_EVENT.pth') prediction= model(xTest) _run.log_scalar("accuracy_score", accuracy_score(yTest, np.argmax(prediction.detach().numpy(), axis=1))) # _run.log_scalar("F1", str(f1_score(yTest, np.argmax(prediction.detach().numpy(), axis=1), average=None))) print("accuracy_score", accuracy_score(yTest, np.argmax(prediction.detach().numpy(), axis=1))) # print("F1", f1_score(yTest, np.argmax(prediction.detach().numpy(), axis=1), average=None)) @ex.automain def my_main(epochs, batch_size, _run): readAndtrain() ex.run() ex.add_artifact('DEATH_EVENT.pth')