import sys import torch import torch.nn as nn from sklearn import preprocessing import numpy as np import pandas as pd np.set_printoptions(suppress=False) class LogisticRegressionModel(nn.Module): def __init__(self, input_dim, output_dim): super(LogisticRegressionModel, self).__init__() self.linear = nn.Linear(input_dim, output_dim) self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.linear(x) return self.sigmoid(out) train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') categorical_cols = train.select_dtypes(include=object).columns.values input_cols = train.columns.values[1:-1] output_cols = train.columns.values[-1:] def dataframe_to_arrays(dataframe): # Make a copy of the original dataframe dataframe1 = dataframe.copy(deep=True) # Convert non-numeric categorical columns to numbers for col in categorical_cols: dataframe1[col] = dataframe1[col].astype('category').cat.codes # Extract input & outupts as numpy arrays min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(dataframe1) dataframe1 = pd.DataFrame(x_scaled, columns = dataframe1.columns) inputs_array = dataframe1[input_cols].to_numpy() targets_array = dataframe1[output_cols].to_numpy() return inputs_array, targets_array inputs_array_training, targets_array_training = dataframe_to_arrays(train) inputs_array_testing, targets_array_testing = dataframe_to_arrays(test) inputs_training = torch.from_numpy(inputs_array_training).type(torch.float32) targets_training = torch.from_numpy(targets_array_training).type(torch.float32) inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32) targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32) fTrain = inputs_training.values tTrain = targets_training.values fTest= inputs_testing.values tTest = targets_testing.values batch_size = 16 num_epochs = 5 learning_rate = 0.001 input_dim = 6 output_dim = 1 model = LogisticRegressionModel(input_dim, output_dim) criterion = torch.nn.BCELoss(reduction='mean') optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate) for epoch in range(num_epochs): # print ("Epoch #",epoch) model.train() optimizer.zero_grad() # Forward pass y_pred = model(fTrain) # Compute Loss loss = criterion(y_pred, tTrain) # print(loss.item()) # Backward pass loss.backward() optimizer.step() y_pred = model(fTest, return_dict=False) print("predicted Y value: ", y_pred.data) torch.save(model.state_dict(), 'stroke.pth')