33 lines
920 B
Python
33 lines
920 B
Python
import pandas as pd
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn import preprocessing
|
|
import kaggle
|
|
|
|
kaggle.api.authenticate()
|
|
|
|
kaggle.api.dataset_download_files('martj42/international-football-results-from-1872-to-2017', path='.', unzip=True)
|
|
|
|
results = pd.read_csv('results.csv')
|
|
|
|
#brak wierszy z NaN
|
|
results.dropna()
|
|
|
|
#normalizacja itp
|
|
for collumn in ['home_team', 'away_team', 'tournament', 'city', 'country']:
|
|
results[collumn] = results[collumn].str.lower()
|
|
|
|
# Podział zbioru 6:1:1
|
|
train, test = train_test_split(results, test_size= 1 - 0.6)
|
|
|
|
valid, test = train_test_split(test, test_size=0.5)
|
|
|
|
|
|
print("All data: ", results.size)
|
|
print("Train size: ", train.size)
|
|
print("Test size: ", test.size)
|
|
print("Validate size: ", valid.size)
|
|
print(results.describe(include='all'))
|
|
|
|
# sprawdzenie czy cały dataset oraz podział na podzbiory jest równy
|
|
print(train.size+test.size+valid.size)
|