86 lines
3.0 KiB
Python
86 lines
3.0 KiB
Python
import torch
|
|
from torch import nn
|
|
import numpy as np
|
|
import pandas as pd
|
|
from sklearn.metrics import accuracy_score
|
|
from sklearn.metrics import f1_score
|
|
from sacred import Experiment
|
|
from sacred.observers import FileStorageObserver
|
|
|
|
np.set_printoptions(suppress=False)
|
|
|
|
ex = Experiment("434732", interactive=False, save_git_info=False)
|
|
ex.observers.append(FileStorageObserver('ium_s434732/my_runs'))
|
|
|
|
@ex.config
|
|
def my_config():
|
|
epochs = 5
|
|
batch_size = 10
|
|
|
|
class LogisticRegressionModel(nn.Module):
|
|
def __init__(self, input_dim, output_dim):
|
|
super(LogisticRegressionModel, self).__init__()
|
|
self.linear = nn.Linear(input_dim, output_dim)
|
|
self.sigmoid = nn.Sigmoid()
|
|
def forward(self, x):
|
|
out = self.linear(x)
|
|
return self.sigmoid(out)
|
|
|
|
|
|
@ex.capture
|
|
def readAndtrain(epochs, batch_size, _run):
|
|
train = pd.read_csv("train.csv")
|
|
test = pd.read_csv("test.csv")
|
|
|
|
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
|
ytrain = train['DEATH_EVENT'].astype(np.float32)
|
|
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
|
|
ytest = test['DEATH_EVENT'].astype(np.float32)
|
|
xTrain = torch.from_numpy(xtrain.values)
|
|
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
|
|
xTest = torch.from_numpy(xtest.values)
|
|
yTest = torch.from_numpy(ytest.values)
|
|
|
|
learning_rate = 0.002
|
|
input_dim = 11
|
|
output_dim = 1
|
|
|
|
_run.log_scalar("Batch", str(batch_size))
|
|
_run.log_scalar("epoch", str(epochs))
|
|
|
|
model = LogisticRegressionModel(input_dim, output_dim)
|
|
model.load_state_dict(torch.load('DEATH_EVENT.pth'))
|
|
|
|
criterion = torch.nn.BCELoss(reduction='mean')
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
|
|
|
for epoch in range(epochs):
|
|
# print ("Epoch #",epoch)
|
|
model.train()
|
|
optimizer.zero_grad()
|
|
# Forward pass
|
|
y_pred = model(xTrain)
|
|
# Compute Loss
|
|
loss = criterion(y_pred, yTrain)
|
|
# print(loss.item())
|
|
# Backward pass
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
_run.log_scalar("Lost", str(loss.item()))
|
|
|
|
|
|
torch.save(model.state_dict(), 'DEATH_EVENT.pth')
|
|
prediction= model(xTest)
|
|
_run.log_scalar("accuracy_score", accuracy_score(yTest, np.argmax(prediction.detach().numpy(), axis=1)))
|
|
# _run.log_scalar("F1", str(f1_score(yTest, np.argmax(prediction.detach().numpy(), axis=1), average=None)))
|
|
|
|
print("accuracy_score", accuracy_score(yTest, np.argmax(prediction.detach().numpy(), axis=1)))
|
|
# print("F1", f1_score(yTest, np.argmax(prediction.detach().numpy(), axis=1), average=None))
|
|
|
|
@ex.automain
|
|
def my_main(epochs, batch_size, _run):
|
|
readAndtrain()
|
|
|
|
ex.run()
|
|
ex.add_artifact('DEATH_EVENT.pth') |