ium_434732/IUM_05.py
s434732 877975b3c4
All checks were successful
s434732-training/pipeline/head This commit looks good
training.py
2021-05-15 15:34:10 +02:00

61 lines
1.9 KiB
Python

import torch
from torch import nn
import numpy as np
import pandas as pd
np.set_printoptions(suppress=False)
class LogisticRegressionModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear(x)
return self.sigmoid(out)
data_train = pd.read_csv("train.csv")
data_test = pd.read_csv("test.csv")
data_val = pd.read_csv("valid.csv")
x_train = data_train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
y_train = data_train['DEATH_EVENT'].astype(np.float32)
x_test = data_test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
y_test = data_test['DEATH_EVENT'].astype(np.float32)
fTrain = torch.from_numpy(x_train.values)
tTrain = torch.from_numpy(y_train.values.reshape(179,1))
fTest= torch.from_numpy(x_test.values)
tTest = torch.from_numpy(y_test.values)
batch_size = 10
num_epochs = 5
learning_rate = 0.002
input_dim = 11
output_dim = 1
model = LogisticRegressionModel(input_dim, output_dim)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
for epoch in range(num_epochs):
# print ("Epoch #",epoch)
model.train()
optimizer.zero_grad()
# Forward pass
y_pred = model(fTrain)
# Compute Loss
loss = criterion(y_pred, tTrain)
# print(loss.item())
# Backward pass
loss.backward()
optimizer.step()
y_pred = model(fTest)
print(y_pred.data)
torch.save(model.state_dict(), 'DEATH_EVENT.pth')