153 lines
4.7 KiB
Python
153 lines
4.7 KiB
Python
import sys
|
|
import torch
|
|
import torch.nn as nn
|
|
import pandas as pd
|
|
import torch.nn.functional as F
|
|
from torch.utils.data import DataLoader, TensorDataset, random_split
|
|
from sklearn import preprocessing
|
|
|
|
|
|
batch_size = 64
|
|
|
|
train = pd.read_csv('train.csv')
|
|
test = pd.read_csv('test.csv')
|
|
|
|
categorical_cols = train.select_dtypes(include=object).columns.values
|
|
|
|
input_cols = train.columns.values[1:-1]
|
|
output_cols = train.columns.values[-1:]
|
|
|
|
|
|
def dataframe_to_arrays(dataframe):
|
|
# Make a copy of the original dataframe
|
|
dataframe1 = dataframe.copy(deep=True)
|
|
# Convert non-numeric categorical columns to numbers
|
|
for col in categorical_cols:
|
|
dataframe1[col] = dataframe1[col].astype('category').cat.codes
|
|
# Extract input & outupts as numpy arrays
|
|
|
|
min_max_scaler = preprocessing.MinMaxScaler()
|
|
x_scaled = min_max_scaler.fit_transform(dataframe1)
|
|
dataframe1 = pd.DataFrame(x_scaled, columns = dataframe1.columns)
|
|
|
|
inputs_array = dataframe1[input_cols].to_numpy()
|
|
targets_array = dataframe1[output_cols].to_numpy()
|
|
return inputs_array, targets_array
|
|
|
|
inputs_array_training, targets_array_training = dataframe_to_arrays(train)
|
|
|
|
|
|
inputs_array_testing, targets_array_testing = dataframe_to_arrays(test)
|
|
|
|
|
|
inputs_training = torch.from_numpy(inputs_array_training).type(torch.float32)
|
|
targets_training = torch.from_numpy(targets_array_training).type(torch.float32)
|
|
|
|
inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
|
|
targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
|
|
|
|
train_dataset = TensorDataset(inputs_training, targets_training)
|
|
val_dataset = TensorDataset(inputs_testing, targets_testing)
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
|
|
val_loader = DataLoader(val_dataset, batch_size*2)
|
|
|
|
input_size = len(input_cols)
|
|
output_size = len(output_cols)
|
|
|
|
|
|
|
|
class FootbalModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = nn.Linear(input_size, output_size)
|
|
|
|
def forward(self, xb):
|
|
out = self.linear(xb)
|
|
return out
|
|
|
|
def training_step(self, batch):
|
|
inputs, targets = batch
|
|
# Generate predictions
|
|
out = self(inputs)
|
|
# Calcuate loss
|
|
# loss = F.l1_loss(out, targets)
|
|
loss = F.mse_loss(out, targets)
|
|
return loss
|
|
|
|
def validation_step(self, batch):
|
|
inputs, targets = batch
|
|
# Generate predictions
|
|
out = self(inputs)
|
|
# Calculate loss
|
|
# loss = F.l1_loss(out, targets)
|
|
loss = F.mse_loss(out, targets)
|
|
return {'val_loss': loss.detach()}
|
|
|
|
def validation_epoch_end(self, outputs):
|
|
batch_losses = [x['val_loss'] for x in outputs]
|
|
epoch_loss = torch.stack(batch_losses).mean()
|
|
return {'val_loss': epoch_loss.item()}
|
|
|
|
def epoch_end(self, epoch, result, num_epochs):
|
|
# Print result every 20th epoch
|
|
if (epoch + 1) % 20 == 0 or epoch == num_epochs - 1:
|
|
print("Epoch [{}], val_loss: {:.4f}".format(epoch + 1, result['val_loss']))
|
|
|
|
model = FootbalModel()
|
|
model.load_state_dict(torch.load('FootballModel.pth'))
|
|
list(model.parameters())
|
|
|
|
|
|
# def evaluate(model, val_loader):
|
|
# outputs = [model.validation_step(batch) for batch in val_loader]
|
|
# return model.validation_epoch_end(outputs)
|
|
#
|
|
# def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
|
|
# history = []
|
|
# optimizer = opt_func(model.parameters(), lr)
|
|
# for epoch in range(epochs):
|
|
# # Training Phase
|
|
# for batch in train_loader:
|
|
# loss = model.training_step(batch)
|
|
# loss.backward()
|
|
# optimizer.step()
|
|
# optimizer.zero_grad()
|
|
# # Validation phase
|
|
# result = evaluate(model, val_loader)
|
|
# model.epoch_end(epoch, result, epochs)
|
|
# history.append(result)
|
|
# return history
|
|
#
|
|
#
|
|
# result = evaluate(model, val_loader) # Use the the evaluate function
|
|
#
|
|
# # epochs = 100
|
|
# lr = 1e-6
|
|
# history3 = fit(epochs, lr, model, train_loader, val_loader)
|
|
#
|
|
def predict_single(input, target, model):
|
|
inputs = input.unsqueeze(0)
|
|
predictions = model(input)
|
|
print(type(predictions))# fill this
|
|
prediction = predictions[0].detach()
|
|
print(prediction)
|
|
print("Prediction:", prediction)
|
|
if prediction >= 0.5:
|
|
print('Neutral')
|
|
else:
|
|
print('not neutral')
|
|
|
|
# inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
|
|
# targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
|
|
|
|
# inputs = input.unsqueeze(0)
|
|
# predictions = model(targets_testing)
|
|
|
|
|
|
for i in range(len(val_dataset)):
|
|
input, target = val_dataset[i]
|
|
predict_single(input, target, model)
|
|
|
|
|
|
# torch.save(model.state_dict(), 'FootballModel.pth') |