ium_434732/IUM_05.py
s434732 a8eb0ab145
Some checks failed
s434732-training/pipeline/head There was a failure building this commit
zad5
2021-04-24 12:21:33 +02:00

152 lines
4.6 KiB
Python

from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import pandas as pd
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset, random_split
from sklearn import preprocessing
results = pd.read_csv('results.csv')
#brak wierszy z NaN
results.dropna()
#normalizacja itp
for collumn in ['home_team', 'away_team', 'tournament', 'city', 'country']:
results[collumn] = results[collumn].str.lower()
categorical_cols = results.select_dtypes(include=object).columns.values
train, test = train_test_split(results, test_size= 1 - 0.4)
#valid, test = train_test_split(test, test_size=0.5)
input_cols = train.columns.values[1:-1]
output_cols = train.columns.values[-1:]
def dataframe_to_arrays(dataframe):
# Make a copy of the original dataframe
dataframe1 = dataframe.copy(deep=True)
# Convert non-numeric categorical columns to numbers
for col in categorical_cols:
dataframe1[col] = dataframe1[col].astype('category').cat.codes
# Extract input & outupts as numpy arrays
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(dataframe1)
dataframe1 = pd.DataFrame(x_scaled, columns = dataframe1.columns)
inputs_array = dataframe1[input_cols].to_numpy()
targets_array = dataframe1[output_cols].to_numpy()
return inputs_array, targets_array
inputs_array_training, targets_array_training = dataframe_to_arrays(train)
inputs_array_testing, targets_array_testing = dataframe_to_arrays(test)
inputs_training = torch.from_numpy(inputs_array_training).type(torch.float32)
targets_training = torch.from_numpy(targets_array_training).type(torch.float32)
inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
train_dataset = TensorDataset(inputs_training, targets_training)
val_dataset = TensorDataset(inputs_testing, targets_testing)
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size*2)
input_size = len(input_cols)
output_size = len(output_cols)
class FootbalModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(input_size, output_size)
def forward(self, xb):
out = self.linear(xb)
return out
def training_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calcuate loss
# loss = F.l1_loss(out, targets)
loss = F.mse_loss(out, targets)
return loss
def validation_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calculate loss
# loss = F.l1_loss(out, targets)
loss = F.mse_loss(out, targets)
return {'val_loss': loss.detach()}
def validation_epoch_end(self, outputs):
batch_losses = [x['val_loss'] for x in outputs]
epoch_loss = torch.stack(batch_losses).mean()
return {'val_loss': epoch_loss.item()}
def epoch_end(self, epoch, result, num_epochs):
# Print result every 20th epoch
if (epoch + 1) % 20 == 0 or epoch == num_epochs - 1:
print("Epoch [{}], val_loss: {:.4f}".format(epoch + 1, result['val_loss']))
model = FootbalModel()
list(model.parameters())
def evaluate(model, val_loader):
outputs = [model.validation_step(batch) for batch in val_loader]
return model.validation_epoch_end(outputs)
def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
history = []
optimizer = opt_func(model.parameters(), lr)
for epoch in range(epochs):
# Training Phase
for batch in train_loader:
loss = model.training_step(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()
# Validation phase
result = evaluate(model, val_loader)
model.epoch_end(epoch, result, epochs)
history.append(result)
return history
result = evaluate(model, val_loader) # Use the the evaluate function
epochs = 100
lr = 1e-6
history3 = fit(epochs, lr, model, train_loader, val_loader)
def predict_single(input, target, model):
inputs = input.unsqueeze(0)
predictions = model(input) # fill this
prediction = predictions[0].detach()
print("Prediction:", prediction)
if prediction >= 0.5:
print('Neutral')
else:
print('not neutral')
for i in range(len(val_dataset)):
input, target = val_dataset[i]
predict_single(input, target, model)
torch.save(model.state_dict(), 'FootballModel.pth')