ium_434732/evaluation.py
2021-05-15 15:24:37 +02:00

153 lines
4.7 KiB
Python

import sys
import torch
import torch.nn as nn
import pandas as pd
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset, random_split
from sklearn import preprocessing
batch_size = 64
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
categorical_cols = train.select_dtypes(include=object).columns.values
input_cols = train.columns.values[1:-1]
output_cols = train.columns.values[-1:]
def dataframe_to_arrays(dataframe):
# Make a copy of the original dataframe
dataframe1 = dataframe.copy(deep=True)
# Convert non-numeric categorical columns to numbers
for col in categorical_cols:
dataframe1[col] = dataframe1[col].astype('category').cat.codes
# Extract input & outupts as numpy arrays
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(dataframe1)
dataframe1 = pd.DataFrame(x_scaled, columns = dataframe1.columns)
inputs_array = dataframe1[input_cols].to_numpy()
targets_array = dataframe1[output_cols].to_numpy()
return inputs_array, targets_array
inputs_array_training, targets_array_training = dataframe_to_arrays(train)
inputs_array_testing, targets_array_testing = dataframe_to_arrays(test)
inputs_training = torch.from_numpy(inputs_array_training).type(torch.float32)
targets_training = torch.from_numpy(targets_array_training).type(torch.float32)
inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
train_dataset = TensorDataset(inputs_training, targets_training)
val_dataset = TensorDataset(inputs_testing, targets_testing)
train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size*2)
input_size = len(input_cols)
output_size = len(output_cols)
class FootbalModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(input_size, output_size)
def forward(self, xb):
out = self.linear(xb)
return out
def training_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calcuate loss
# loss = F.l1_loss(out, targets)
loss = F.mse_loss(out, targets)
return loss
def validation_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calculate loss
# loss = F.l1_loss(out, targets)
loss = F.mse_loss(out, targets)
return {'val_loss': loss.detach()}
def validation_epoch_end(self, outputs):
batch_losses = [x['val_loss'] for x in outputs]
epoch_loss = torch.stack(batch_losses).mean()
return {'val_loss': epoch_loss.item()}
def epoch_end(self, epoch, result, num_epochs):
# Print result every 20th epoch
if (epoch + 1) % 20 == 0 or epoch == num_epochs - 1:
print("Epoch [{}], val_loss: {:.4f}".format(epoch + 1, result['val_loss']))
model = FootbalModel()
model.load_state_dict(torch.load('FootballModel.pth'))
list(model.parameters())
# def evaluate(model, val_loader):
# outputs = [model.validation_step(batch) for batch in val_loader]
# return model.validation_epoch_end(outputs)
#
# def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
# history = []
# optimizer = opt_func(model.parameters(), lr)
# for epoch in range(epochs):
# # Training Phase
# for batch in train_loader:
# loss = model.training_step(batch)
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# # Validation phase
# result = evaluate(model, val_loader)
# model.epoch_end(epoch, result, epochs)
# history.append(result)
# return history
#
#
# result = evaluate(model, val_loader) # Use the the evaluate function
#
# # epochs = 100
# lr = 1e-6
# history3 = fit(epochs, lr, model, train_loader, val_loader)
#
def predict_single(input, target, model):
inputs = input.unsqueeze(0)
predictions = model(input)
print(type(predictions))# fill this
prediction = predictions[0].detach()
print(prediction)
print("Prediction:", prediction)
if prediction >= 0.5:
print('Neutral')
else:
print('not neutral')
# inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
# targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
# inputs = input.unsqueeze(0)
# predictions = model(targets_testing)
for i in range(len(val_dataset)):
input, target = val_dataset[i]
predict_single(input, target, model)
# torch.save(model.state_dict(), 'FootballModel.pth')