sport-text-classification-b.../naiwny bayes2.py
2021-05-12 21:32:17 +02:00

33 lines
1016 B
Python

from sklearn.naive_bayes import GaussianNB
import pandas as pd
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
r_in = './train/train.tsv'
r_ind_ev = './dev-0/in.tsv'
tsv_read = pd.read_table(r_in, error_bad_lines=False, sep='\t', header=None)
tsv_read_dev = pd.read_table(r_ind_ev, error_bad_lines=False, sep='\t', header=None)
y_train = tsv_read[0].values
X_train = tsv_read[1].values
X_dev = tsv_read_dev[0].values
vectorizer = TfidfVectorizer()
counts = vectorizer.fit_transform(X_train)
classifier = MultinomialNB()
classifier.fit(counts, y_train)
counts2 = vectorizer.transform(X_dev)
predictions = classifier.predict(counts2)
predictions.tofile("./dev-0/out.tsv", sep='\n')
tsv_read_test_in = pd.read_table('./test-A/in.tsv', error_bad_lines=False, header= None)
X_test= tsv_read_test_in[0].values
counts3 = vectorizer.transform(X_test)
predictions_test_A = classifier.predict(counts3)
predictions_test_A.tofile('./test-A/out.tsv', sep='\n')