Merge branch 'iris-clasification' of s434734/AiForklift into master
This commit is contained in:
commit
7b02c4f746
BIN
iris_model.h5
Normal file
BIN
iris_model.h5
Normal file
Binary file not shown.
Binary file not shown.
@ -39,7 +39,6 @@ class Forklift {
|
|||||||
}
|
}
|
||||||
|
|
||||||
setVelocity() {
|
setVelocity() {
|
||||||
debugger;
|
|
||||||
this.direction = this.sub(sections[this.currentTarget], this.positoin);
|
this.direction = this.sub(sections[this.currentTarget], this.positoin);
|
||||||
this.velocity = this.direction.setMag(this.speed);
|
this.velocity = this.direction.setMag(this.speed);
|
||||||
}
|
}
|
||||||
@ -49,8 +48,7 @@ class Forklift {
|
|||||||
if (
|
if (
|
||||||
Math.abs(this.positoin.x - sections[this.currentTarget].x) <=
|
Math.abs(this.positoin.x - sections[this.currentTarget].x) <=
|
||||||
this.speed &&
|
this.speed &&
|
||||||
Math.abs(this.positoin.y - sections[this.currentTarget].y) <=
|
Math.abs(this.positoin.y - sections[this.currentTarget].y) <= this.speed
|
||||||
this.speed
|
|
||||||
) {
|
) {
|
||||||
this.positoin = sections[this.currentTarget];
|
this.positoin = sections[this.currentTarget];
|
||||||
this.nextTarget();
|
this.nextTarget();
|
||||||
|
@ -1,11 +1,10 @@
|
|||||||
|
const serverUrl = 'http://localhost:8000';
|
||||||
let sections;
|
let sections;
|
||||||
let roads;
|
let roads;
|
||||||
let packageClaim;
|
let packageClaim;
|
||||||
let going = false;
|
let going = false;
|
||||||
let forklift;
|
let forklift;
|
||||||
|
|
||||||
let target;
|
|
||||||
|
|
||||||
// This runs once at start
|
// This runs once at start
|
||||||
function setup() {
|
function setup() {
|
||||||
createCanvas(600, 600).parent('canvas');
|
createCanvas(600, 600).parent('canvas');
|
||||||
@ -14,8 +13,11 @@ function setup() {
|
|||||||
|
|
||||||
createMagazineLayout();
|
createMagazineLayout();
|
||||||
|
|
||||||
select('#button').mousePressed(deliver);
|
select('#button').mousePressed(getIrisType);
|
||||||
target = select('#target');
|
sepalWidth = select('#sepalWidth');
|
||||||
|
sepalLength = select('#sepalLength');
|
||||||
|
petalWidth = select('#petalWidth');
|
||||||
|
petalLength = select('#petalLength');
|
||||||
// Create a forklift instance
|
// Create a forklift instance
|
||||||
forklift = new Forklift(sections[0].x, sections[0].y);
|
forklift = new Forklift(sections[0].x, sections[0].y);
|
||||||
}
|
}
|
||||||
@ -63,14 +65,31 @@ function drawMagazine() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
function deliver() {
|
function getIrisType() {
|
||||||
|
let sw = select('#sepalWidth').value();
|
||||||
|
let sl = select('#sepalLength').value();
|
||||||
|
let pw = select('#petalWidth').value();
|
||||||
|
let pl = select('#petalLength').value();
|
||||||
|
let data = {
|
||||||
|
sepalWidth: sw,
|
||||||
|
sepalLength: sl,
|
||||||
|
petalWidth: pw,
|
||||||
|
petalLength: pl,
|
||||||
|
};
|
||||||
|
httpPost(serverUrl + '/classify', data, response => {
|
||||||
|
deliver(response);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
function deliver(targetSection) {
|
||||||
let data = {
|
let data = {
|
||||||
graph: magazineToGraph(),
|
graph: magazineToGraph(),
|
||||||
start_node: forklift.currentSection,
|
start_node: forklift.currentSection,
|
||||||
dest_node: int(target.value()),
|
dest_node: int(targetSection),
|
||||||
};
|
};
|
||||||
|
console.log(data);
|
||||||
httpPost(
|
httpPost(
|
||||||
'http://localhost:8000/shortestPath',
|
serverUrl + '/shortestPath',
|
||||||
data,
|
data,
|
||||||
response => {
|
response => {
|
||||||
path = response.split('').map(Number);
|
path = response.split('').map(Number);
|
||||||
|
@ -42,27 +42,21 @@
|
|||||||
<div class="package">
|
<div class="package">
|
||||||
<h3 style="margin-top: 0;">Package description</h1>
|
<h3 style="margin-top: 0;">Package description</h1>
|
||||||
<label for="width">Sepal Width</label>
|
<label for="width">Sepal Width</label>
|
||||||
<input type="number" name="width">
|
<input type="number" id="sepalWidth">
|
||||||
<label for="topWidth">Sepal Length</label>
|
<label for="topWidth">Sepal Length</label>
|
||||||
<input type="number" name="topWidth">
|
<input type="number" id="sepalLength">
|
||||||
<label for="botWidth">Petal Width</label>
|
<label for="botWidth">Petal Width</label>
|
||||||
<input type="number" name="botWidth">
|
<input type="number" id="petalWidth">
|
||||||
<label for="height">Petal Length</label>
|
<label for="height">Petal Length</label>
|
||||||
<input type="number" name="height">
|
<input type="number" id="petalLength">
|
||||||
<label for="target">Target</label>
|
|
||||||
<input type="number" id="target" name="target">
|
|
||||||
<button id="button">Send Package</button>
|
<button id="button">Send Package</button>
|
||||||
</div>
|
</div>
|
||||||
<div id="canvas" style="margin: 10px;"></div>
|
<div id="canvas" style="margin: 10px;"></div>
|
||||||
<div class="legend">
|
<div class="legend">
|
||||||
<h3 style="margin-top: 0">Sections</h3>
|
<h3 style="margin-top: 0">Sections</h3>
|
||||||
<p>A - Cartons</p>
|
<p>1 - Setosa</p>
|
||||||
<p>B - Barrels</p>
|
<p>2 - Versicolor</p>
|
||||||
<p>C - Plastic boxes</p>
|
<p>3 - Viginica</p>
|
||||||
<p>D - ______</p>
|
|
||||||
<p>E - ______</p>
|
|
||||||
<p>F - ______</p>
|
|
||||||
<p>G - ______</p>
|
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
</body>
|
</body>
|
||||||
|
@ -1,10 +1,11 @@
|
|||||||
|
import math
|
||||||
|
import json
|
||||||
from django.shortcuts import render
|
from django.shortcuts import render
|
||||||
from django.http import HttpResponse
|
from django.http import HttpResponse
|
||||||
from django.views.decorators.csrf import csrf_exempt
|
from django.views.decorators.csrf import csrf_exempt
|
||||||
|
|
||||||
import json
|
import tensorflow as tf
|
||||||
import math
|
import numpy as np
|
||||||
|
|
||||||
# Create your views here.
|
# Create your views here.
|
||||||
|
|
||||||
|
|
||||||
@ -14,7 +15,21 @@ def index(request):
|
|||||||
|
|
||||||
@csrf_exempt
|
@csrf_exempt
|
||||||
def classify(request):
|
def classify(request):
|
||||||
return HttpResponse(json.load(request))
|
loaded_request = json.load(request)
|
||||||
|
sw = loaded_request['sepalWidth']
|
||||||
|
sl = loaded_request['sepalLength']
|
||||||
|
pw = loaded_request['petalWidth']
|
||||||
|
pl = loaded_request['petalLength']
|
||||||
|
|
||||||
|
model = tf.keras.models.load_model('iris_model.h5')
|
||||||
|
output = model.predict(np.array([[sw, sl, pw, pl]]))
|
||||||
|
if output[0][0] > output[0][1] and output[0][0] > output[0][1]:
|
||||||
|
guess = 1
|
||||||
|
elif output[0][1] > output[0][0] and output[0][1] > output[0][2]:
|
||||||
|
guess = 2
|
||||||
|
else:
|
||||||
|
guess = 3
|
||||||
|
return HttpResponse(guess)
|
||||||
|
|
||||||
|
|
||||||
@csrf_exempt
|
@csrf_exempt
|
||||||
@ -61,4 +76,6 @@ def shortestPath(request):
|
|||||||
current = predecessor[current]
|
current = predecessor[current]
|
||||||
path[node] = p[::-1]
|
path[node] = p[::-1]
|
||||||
|
|
||||||
|
print(path)
|
||||||
|
|
||||||
return HttpResponse(path[dest_node][1:])
|
return HttpResponse(path[dest_node][1:])
|
||||||
|
28
train_model.py
Normal file
28
train_model.py
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from sklearn.datasets import load_iris
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
|
||||||
|
from tensorflow.keras import layers
|
||||||
|
from tensorflow.keras.utils import to_categorical
|
||||||
|
|
||||||
|
# Getting data
|
||||||
|
data_set = load_iris()
|
||||||
|
x = data_set['data']
|
||||||
|
y = to_categorical(data_set['target'])
|
||||||
|
|
||||||
|
train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.2)
|
||||||
|
|
||||||
|
# Building the model
|
||||||
|
model = tf.keras.Sequential()
|
||||||
|
|
||||||
|
model.add(layers.Dense(8, activation='relu', input_dim=4))
|
||||||
|
model.add(layers.Dense(3, activation='sigmoid'))
|
||||||
|
|
||||||
|
model.compile(optimizer='adam', loss='categorical_crossentropy',
|
||||||
|
metrics=['accuracy'])
|
||||||
|
# Training the model
|
||||||
|
model.fit(train_x, train_y, validation_data=(test_x, test_y), epochs=2000)
|
||||||
|
|
||||||
|
model.save('iris_model.h5')
|
Loading…
Reference in New Issue
Block a user