From 2c992734bf5b7fbec84b1bc2322117f382aa70e2 Mon Sep 17 00:00:00 2001 From: patrycjalazna Date: Sun, 21 Mar 2021 16:49:08 +0100 Subject: [PATCH] tasks from IUM_02.Dane.ipynb --- laby-inz-um.ipynb | 1459 ++++++++++++++++++++++----------------------- 1 file changed, 728 insertions(+), 731 deletions(-) diff --git a/laby-inz-um.ipynb b/laby-inz-um.ipynb index 7a9abd4..127efe2 100644 --- a/laby-inz-um.ipynb +++ b/laby-inz-um.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 20, "metadata": { "scrolled": true }, @@ -32,22 +32,28 @@ "output_type": "stream", "text": [ "Requirement already satisfied: kaggle in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (1.5.12)\n", - "Requirement already satisfied: urllib3 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from kaggle) (1.26.2)\n", - "Requirement already satisfied: certifi in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from kaggle) (2020.12.5)\n", - "Requirement already satisfied: requests in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from kaggle) (2.25.1)\n", "Requirement already satisfied: six>=1.10 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from kaggle) (1.15.0)\n", + "Requirement already satisfied: requests in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from kaggle) (2.25.1)\n", "Requirement already satisfied: python-dateutil in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from kaggle) (2.8.1)\n", - "Requirement already satisfied: tqdm in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from kaggle) (4.59.0)\n", "Requirement already satisfied: python-slugify in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from kaggle) (4.0.1)\n", + "Requirement already satisfied: urllib3 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from kaggle) (1.26.2)\n", + "Requirement already satisfied: tqdm in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from kaggle) (4.59.0)\n", + "Requirement already satisfied: certifi in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from kaggle) (2020.12.5)\n", "Requirement already satisfied: text-unidecode>=1.3 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from python-slugify->kaggle) (1.3)\n", "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from requests->kaggle) (4.0.0)\n", "Requirement already satisfied: idna<3,>=2.5 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from requests->kaggle) (2.10)\n", "OOOOOOOOO /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/bin/python\n", "Requirement already satisfied: pandas in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (1.2.3)\n", - "Requirement already satisfied: pytz>=2017.3 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from pandas) (2020.4)\n", "Requirement already satisfied: numpy>=1.16.5 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from pandas) (1.20.1)\n", "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from pandas) (2.8.1)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)\n" + "Requirement already satisfied: pytz>=2017.3 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from pandas) (2020.4)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/Cellar/jupyterlab/3.0.0_1/libexec/lib/python3.9/site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)\n", + "Requirement already satisfied: sklearn in /usr/local/lib/python3.9/site-packages (0.0)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.9/site-packages (from sklearn) (0.24.1)\n", + "Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.9/site-packages (from scikit-learn->sklearn) (1.0.1)\n", + "Requirement already satisfied: scipy>=0.19.1 in /usr/local/lib/python3.9/site-packages (from scikit-learn->sklearn) (1.6.1)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.9/site-packages (from scikit-learn->sklearn) (2.1.0)\n", + "Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.9/site-packages (from scikit-learn->sklearn) (1.20.1)\n" ] } ], @@ -68,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -77,15 +83,15 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Archive: avocado-prices-2020.zip\r\n", - " inflating: avocado-updated-2020.csv \r\n" + "Archive: avocado-prices-2020.zip\n", + " inflating: avocado-updated-2020.csv \n" ] } ], @@ -95,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -123,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 25, "metadata": { "scrolled": true }, @@ -377,7 +383,7 @@ "[33045 rows x 12 columns]" ] }, - "execution_count": 3, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -403,7 +409,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 26, "metadata": { "scrolled": false }, @@ -430,17 +436,13 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Avocado: 396540\n", - "Avocado (train) : 237924\n", - "Avocado (validate): 79308\n", - "Avocado (test) 79308\n", "Avocado: 396540\n", "Avocado (train) : 237924\n", "Avocado (validate): 79308\n", @@ -449,11 +451,6 @@ } ], "source": [ - "print(\"Avocado: \".ljust(20), avocado.size)\n", - "print(\"Avocado (train) : \".ljust(20), avocado_train.size)\n", - "print(\"Avocado (validate): \".ljust(20), avocado_validate.size)\n", - "print(\"Avocado (test) \".ljust(20), avocado_test.size)\n", - "\n", "print(\"Avocado: \".ljust(20), np.size(avocado))\n", "print(\"Avocado (train) : \".ljust(20), np.size(avocado_train))\n", "print(\"Avocado (validate): \".ljust(20), np.size(avocado_validate))\n", @@ -469,7 +466,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -540,7 +537,7 @@ " \n", " \n", " top\n", - " 2019-04-07\n", + " 2017-10-01\n", " NaN\n", " NaN\n", " NaN\n", @@ -551,7 +548,7 @@ " NaN\n", " NaN\n", " conventional\n", - " Harrisburg/Scranton\n", + " Atlanta\n", " \n", " \n", " freq\n", @@ -681,7 +678,7 @@ " date average_price total_volume 4046 4225 \\\n", "count 33045 33045.000000 3.304500e+04 3.304500e+04 3.304500e+04 \n", "unique 306 NaN NaN NaN NaN \n", - "top 2019-04-07 NaN NaN NaN NaN \n", + "top 2017-10-01 NaN NaN NaN NaN \n", "freq 108 NaN NaN NaN NaN \n", "mean NaN 1.379941 9.683997e+05 3.023914e+05 2.797693e+05 \n", "std NaN 0.378972 3.934533e+06 1.301026e+06 1.151052e+06 \n", @@ -704,21 +701,21 @@ "75% 5.096530e+03 1.744314e+05 1.206624e+05 4.041723e+04 8.044400e+02 \n", "max 2.546439e+06 3.168919e+07 2.055041e+07 1.332760e+07 1.403184e+06 \n", "\n", - " type geography \n", - "count 33045 33045 \n", - "unique 2 54 \n", - "top conventional Harrisburg/Scranton \n", - "freq 16524 612 \n", - "mean NaN NaN \n", - "std NaN NaN \n", - "min NaN NaN \n", - "25% NaN NaN \n", - "50% NaN NaN \n", - "75% NaN NaN \n", - "max NaN NaN " + " type geography \n", + "count 33045 33045 \n", + "unique 2 54 \n", + "top conventional Atlanta \n", + "freq 16524 612 \n", + "mean NaN NaN \n", + "std NaN NaN \n", + "min NaN NaN \n", + "25% NaN NaN \n", + "50% NaN NaN \n", + "75% NaN NaN \n", + "max NaN NaN " ] }, - "execution_count": 11, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -736,7 +733,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -807,7 +804,7 @@ " \n", " \n", " top\n", - " 2018-05-27\n", + " 2018-09-23\n", " NaN\n", " NaN\n", " NaN\n", @@ -818,11 +815,11 @@ " NaN\n", " NaN\n", " organic\n", - " Total U.S.\n", + " Sacramento\n", " \n", " \n", " freq\n", - " 78\n", + " 77\n", " NaN\n", " NaN\n", " NaN\n", @@ -832,36 +829,303 @@ " NaN\n", " NaN\n", " NaN\n", - " 9994\n", - " 385\n", + " 9954\n", + " 404\n", " \n", " \n", " mean\n", " NaN\n", - " 1.382445\n", - " 9.842303e+05\n", - " 3.082137e+05\n", - " 2.811551e+05\n", - " 2.144399e+04\n", - " 3.733163e+05\n", - " 2.558598e+05\n", - " 1.092122e+05\n", - " 8.244244e+03\n", + " 1.380658\n", + " 9.503549e+05\n", + " 2.955048e+05\n", + " 2.762023e+05\n", + " 2.117442e+04\n", + " 3.573659e+05\n", + " 2.448356e+05\n", + " 1.049736e+05\n", + " 7.556707e+03\n", " NaN\n", " NaN\n", " \n", " \n", " std\n", " NaN\n", - " 0.380356\n", - " 4.059270e+06\n", - " 1.342202e+06\n", - " 1.160689e+06\n", - " 9.933904e+04\n", - " 1.641781e+06\n", - " 1.086626e+06\n", - " 5.411462e+05\n", - " 5.221449e+04\n", + " 0.377988\n", + " 3.896388e+06\n", + " 1.285945e+06\n", + " 1.147780e+06\n", + " 1.008332e+05\n", + " 1.548676e+06\n", + " 1.023617e+06\n", + " 5.161354e+05\n", + " 4.776408e+04\n", + " NaN\n", + " NaN\n", + " \n", + " \n", + " min\n", + " NaN\n", + " 0.460000\n", + " 2.534500e+02\n", + " 0.000000e+00\n", + " 0.000000e+00\n", + " 0.000000e+00\n", + " 0.000000e+00\n", + " 0.000000e+00\n", + " 0.000000e+00\n", + " 0.000000e+00\n", + " NaN\n", + " NaN\n", + " \n", + " \n", + " 25%\n", + " NaN\n", + " 1.100000\n", + " 1.509891e+04\n", + " 7.560400e+02\n", + " 2.695640e+03\n", + " 0.000000e+00\n", + " 9.095285e+03\n", + " 6.430960e+03\n", + " 4.678750e+02\n", + " 0.000000e+00\n", + " NaN\n", + " NaN\n", + " \n", + " \n", + " 50%\n", + " NaN\n", + " 1.350000\n", + " 1.275485e+05\n", + " 1.086294e+04\n", + " 2.337789e+04\n", + " 1.714100e+02\n", + " 5.240743e+04\n", + " 3.663295e+04\n", + " 6.148990e+03\n", + " 0.000000e+00\n", + " NaN\n", + " NaN\n", + " \n", + " \n", + " 75%\n", + " NaN\n", + " 1.610000\n", + " 4.996119e+05\n", + " 1.174216e+05\n", + " 1.337254e+05\n", + " 4.976950e+03\n", + " 1.721448e+05\n", + " 1.193927e+05\n", + " 3.875767e+04\n", + " 7.391950e+02\n", + " NaN\n", + " NaN\n", + " \n", + " \n", + " max\n", + " NaN\n", + " 3.170000\n", + " 6.371614e+07\n", + " 2.113740e+07\n", + " 2.047057e+07\n", + " 2.546439e+06\n", + " 3.168919e+07\n", + " 2.055041e+07\n", + " 1.332760e+07\n", + " 1.403184e+06\n", + " NaN\n", + " NaN\n", + " \n", + " \n", + "\n", + "" + ], + "text/plain": [ + " date average_price total_volume 4046 4225 \\\n", + "count 19827 19827.000000 1.982700e+04 1.982700e+04 1.982700e+04 \n", + "unique 306 NaN NaN NaN NaN \n", + "top 2018-09-23 NaN NaN NaN NaN \n", + "freq 77 NaN NaN NaN NaN \n", + "mean NaN 1.380658 9.503549e+05 2.955048e+05 2.762023e+05 \n", + "std NaN 0.377988 3.896388e+06 1.285945e+06 1.147780e+06 \n", + "min NaN 0.460000 2.534500e+02 0.000000e+00 0.000000e+00 \n", + "25% NaN 1.100000 1.509891e+04 7.560400e+02 2.695640e+03 \n", + "50% NaN 1.350000 1.275485e+05 1.086294e+04 2.337789e+04 \n", + "75% NaN 1.610000 4.996119e+05 1.174216e+05 1.337254e+05 \n", + "max NaN 3.170000 6.371614e+07 2.113740e+07 2.047057e+07 \n", + "\n", + " 4770 total_bags small_bags large_bags xlarge_bags \\\n", + "count 1.982700e+04 1.982700e+04 1.982700e+04 1.982700e+04 1.982700e+04 \n", + "unique NaN NaN NaN NaN NaN \n", + "top NaN NaN NaN NaN NaN \n", + "freq NaN NaN NaN NaN NaN \n", + "mean 2.117442e+04 3.573659e+05 2.448356e+05 1.049736e+05 7.556707e+03 \n", + "std 1.008332e+05 1.548676e+06 1.023617e+06 5.161354e+05 4.776408e+04 \n", + "min 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 \n", + "25% 0.000000e+00 9.095285e+03 6.430960e+03 4.678750e+02 0.000000e+00 \n", + "50% 1.714100e+02 5.240743e+04 3.663295e+04 6.148990e+03 0.000000e+00 \n", + "75% 4.976950e+03 1.721448e+05 1.193927e+05 3.875767e+04 7.391950e+02 \n", + "max 2.546439e+06 3.168919e+07 2.055041e+07 1.332760e+07 1.403184e+06 \n", + "\n", + " type geography \n", + "count 19827 19827 \n", + "unique 2 54 \n", + "top organic Sacramento \n", + "freq 9954 404 \n", + "mean NaN NaN \n", + "std NaN NaN \n", + "min NaN NaN \n", + "25% NaN NaN \n", + "50% NaN NaN \n", + "75% NaN NaN \n", + "max NaN NaN " + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "avocado_train.describe(include= 'all' )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Podsumowanie podzbioru validate." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -884,13 +1148,13 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -899,13 +1163,13 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -914,14 +1178,14 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -929,281 +1193,14 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
dateaverage_pricetotal_volume404642254770total_bagssmall_bagslarge_bagsxlarge_bagstypegeography
count66096609.0000006.609000e+036.609000e+036.609000e+036.609000e+036.609000e+036.609000e+036.609000e+036.609000e+0366096609
unique306NaNNaNNaNNaNNaNNaNNaNNaNNaN254
top2020-05-03NaNNaNNaNNaNNaNNaNNaNNaNNaNorganicJacksonville
freq35NaNNaNNaNNaNNaNNaNNaNNaNNaN3365149
meanNaN1.3826249.914296e+053.140144e+052.827458e+052.172480e+043.729031e+052.567059e+051.085372e+057.660065e+03NaNNaN
stdNaN0.3809974.042527e+061.341419e+061.181393e+061.021178e+051.596924e+061.065783e+065.196275e+054.795256e+04NaNNaN
25%NaN1.1000001.502517e+047.553800e+022.662590e+031.486299e+047.570000e+022.534810e+030.000000e+009.019690e+036.465295e+034.733400e+029.007310e+036.281480e+034.562400e+020.000000e+00NaNNaN50%NaN1.3500001.257107e+051.091600e+042.286104e+041.671200e+025.271949e+043.656873e+046.357750e+031.241199e+051.023778e+042.204006e+041.674700e+025.247009e+043.492217e+046.458780e+030.000000e+00NaNNaN75%NaN1.6200004.955154e+051.173649e+051.302297e+055.030365e+031.725405e+051.200577e+053.970489e+047.745050e+025.026773e+051.207824e+051.307007e+055.104000e+031.706264e+051.197749e+054.128634e+047.951300e+02NaNNaN
maxNaN3.2500006.245151e+076.250565e+072.274362e+072.047057e+072.546439e+062.898902e+071.873969e+072.044550e+071.800066e+062.666884e+071.740824e+071.077854e+071.403184e+06NaNNaN
\n", - "
" - ], - "text/plain": [ - " date average_price total_volume 4046 4225 \\\n", - "count 19827 19827.000000 1.982700e+04 1.982700e+04 1.982700e+04 \n", - "unique 306 NaN NaN NaN NaN \n", - "top 2018-05-27 NaN NaN NaN NaN \n", - "freq 78 NaN NaN NaN NaN \n", - "mean NaN 1.382445 9.842303e+05 3.082137e+05 2.811551e+05 \n", - "std NaN 0.380356 4.059270e+06 1.342202e+06 1.160689e+06 \n", - "min NaN 0.440000 8.456000e+01 0.000000e+00 0.000000e+00 \n", - "25% NaN 1.100000 1.502517e+04 7.553800e+02 2.662590e+03 \n", - "50% NaN 1.350000 1.257107e+05 1.091600e+04 2.286104e+04 \n", - "75% NaN 1.620000 4.955154e+05 1.173649e+05 1.302297e+05 \n", - "max NaN 3.250000 6.245151e+07 2.274362e+07 2.047057e+07 \n", - "\n", - " 4770 total_bags small_bags large_bags xlarge_bags \\\n", - "count 1.982700e+04 1.982700e+04 1.982700e+04 1.982700e+04 1.982700e+04 \n", - "unique NaN NaN NaN NaN NaN \n", - "top NaN NaN NaN NaN NaN \n", - "freq NaN NaN NaN NaN NaN \n", - "mean 2.144399e+04 3.733163e+05 2.558598e+05 1.092122e+05 8.244244e+03 \n", - "std 9.933904e+04 1.641781e+06 1.086626e+06 5.411462e+05 5.221449e+04 \n", - "min 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 \n", - "25% 0.000000e+00 9.019690e+03 6.465295e+03 4.733400e+02 0.000000e+00 \n", - "50% 1.671200e+02 5.271949e+04 3.656873e+04 6.357750e+03 0.000000e+00 \n", - "75% 5.030365e+03 1.725405e+05 1.200577e+05 3.970489e+04 7.745050e+02 \n", - "max 2.546439e+06 2.898902e+07 1.873969e+07 1.077854e+07 1.403184e+06 \n", - "\n", - " type geography \n", - "count 19827 19827 \n", - "unique 2 54 \n", - "top organic Total U.S. \n", - "freq 9994 385 \n", - "mean NaN NaN \n", - "std NaN NaN \n", - "min NaN NaN \n", - "25% NaN NaN \n", - "50% NaN NaN \n", - "75% NaN NaN \n", - "max NaN NaN " - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "avocado_train.describe(include= 'all' )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Podsumowanie podzbioru validate." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1215,44 +1212,44 @@ " date average_price total_volume 4046 4225 \\\n", "count 6609 6609.000000 6.609000e+03 6.609000e+03 6.609000e+03 \n", "unique 306 NaN NaN NaN NaN \n", - "top 2018-09-23 NaN NaN NaN NaN \n", - "freq 34 NaN NaN NaN NaN \n", - "mean NaN 1.375854 9.279758e+05 2.892279e+05 2.674004e+05 \n", - "std NaN 0.377069 3.625729e+06 1.199961e+06 1.052852e+06 \n", - "min NaN 0.460000 4.052900e+02 0.000000e+00 0.000000e+00 \n", - "25% NaN 1.090000 1.551623e+04 8.010400e+02 2.816310e+03 \n", - "50% NaN 1.330000 1.365043e+05 1.175421e+04 2.520685e+04 \n", - "75% NaN 1.610000 5.151225e+05 1.203490e+05 1.389205e+05 \n", - "max NaN 2.880000 6.217938e+07 1.930895e+07 1.438218e+07 \n", + "top 2020-05-03 NaN NaN NaN NaN \n", + "freq 35 NaN NaN NaN NaN \n", + "mean NaN 1.382624 9.914296e+05 3.140144e+05 2.827458e+05 \n", + "std NaN 0.380997 4.042527e+06 1.341419e+06 1.181393e+06 \n", + "min NaN 0.440000 8.456000e+01 0.000000e+00 0.000000e+00 \n", + "25% NaN 1.100000 1.486299e+04 7.570000e+02 2.534810e+03 \n", + "50% NaN 1.350000 1.241199e+05 1.023778e+04 2.204006e+04 \n", + "75% NaN 1.620000 5.026773e+05 1.207824e+05 1.307007e+05 \n", + "max NaN 3.250000 6.250565e+07 2.274362e+07 2.044550e+07 \n", "\n", " 4770 total_bags small_bags large_bags xlarge_bags \\\n", "count 6.609000e+03 6.609000e+03 6.609000e+03 6.609000e+03 6.609000e+03 \n", "unique NaN NaN NaN NaN NaN \n", "top NaN NaN NaN NaN NaN \n", "freq NaN NaN NaN NaN NaN \n", - "mean 2.096474e+04 3.503326e+05 2.416817e+05 1.015750e+05 7.075827e+03 \n", - "std 9.519738e+04 1.441841e+06 9.691120e+05 4.693469e+05 4.258374e+04 \n", + "mean 2.172480e+04 3.729031e+05 2.567059e+05 1.085372e+05 7.660065e+03 \n", + "std 1.021178e+05 1.596924e+06 1.065783e+06 5.196275e+05 4.795256e+04 \n", "min 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 \n", - "25% 0.000000e+00 9.371390e+03 6.681850e+03 5.007300e+02 0.000000e+00 \n", - "50% 2.105400e+02 5.490816e+04 3.864939e+04 6.601310e+03 0.000000e+00 \n", - "75% 5.429000e+03 1.737592e+05 1.205833e+05 4.094432e+04 8.241000e+02 \n", - "max 1.773089e+06 3.112839e+07 2.055041e+07 9.682199e+06 1.099412e+06 \n", + "25% 0.000000e+00 9.007310e+03 6.281480e+03 4.562400e+02 0.000000e+00 \n", + "50% 1.674700e+02 5.247009e+04 3.492217e+04 6.458780e+03 0.000000e+00 \n", + "75% 5.104000e+03 1.706264e+05 1.197749e+05 4.128634e+04 7.951300e+02 \n", + "max 1.800066e+06 2.666884e+07 1.740824e+07 1.077854e+07 1.123540e+06 \n", "\n", - " type geography \n", - "count 6609 6609 \n", - "unique 2 54 \n", - "top conventional Albany \n", - "freq 3403 152 \n", - "mean NaN NaN \n", - "std NaN NaN \n", - "min NaN NaN \n", - "25% NaN NaN \n", - "50% NaN NaN \n", - "75% NaN NaN \n", - "max NaN NaN " + " type geography \n", + "count 6609 6609 \n", + "unique 2 54 \n", + "top organic Jacksonville \n", + "freq 3365 149 \n", + "mean NaN NaN \n", + "std NaN NaN \n", + "min NaN NaN \n", + "25% NaN NaN \n", + "50% NaN NaN \n", + "75% NaN NaN \n", + "max NaN NaN " ] }, - "execution_count": 7, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -1270,7 +1267,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -1341,7 +1338,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1351,12 +1348,12 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1366,44 +1363,44 @@ " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1418,13 +1415,13 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1432,14 +1429,14 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1448,29 +1445,29 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1482,44 +1479,44 @@ " date average_price total_volume 4046 4225 \\\n", "count 6609 6609.000000 6.609000e+03 6.609000e+03 6.609000e+03 \n", "unique 306 NaN NaN NaN NaN \n", - "top 2015-10-04 NaN NaN NaN NaN \n", - "freq 36 NaN NaN NaN NaN \n", - "mean NaN 1.376514 9.613317e+05 2.980880e+05 2.879807e+05 \n", - "std NaN 0.376696 3.850422e+06 1.272440e+06 1.214364e+06 \n", - "min NaN 0.490000 3.311900e+02 0.000000e+00 0.000000e+00 \n", - "25% NaN 1.090000 1.485612e+04 7.720000e+02 2.754560e+03 \n", - "50% NaN 1.350000 1.289999e+05 1.047867e+04 2.323719e+04 \n", - "75% NaN 1.610000 5.313190e+05 1.222257e+05 1.454874e+05 \n", - "max NaN 3.050000 6.371614e+07 2.162018e+07 2.044550e+07 \n", + "top 2020-06-21 NaN NaN NaN NaN \n", + "freq 33 NaN NaN NaN NaN \n", + "mean NaN 1.375107 9.995041e+05 3.114282e+05 2.874940e+05 \n", + "std NaN 0.379902 3.939225e+06 1.305043e+06 1.130053e+06 \n", + "min NaN 0.480000 3.855500e+02 0.000000e+00 0.000000e+00 \n", + "25% NaN 1.090000 1.544873e+04 8.225900e+02 2.903380e+03 \n", + "50% NaN 1.330000 1.409398e+05 1.233835e+04 2.530639e+04 \n", + "75% NaN 1.610000 5.330085e+05 1.221341e+05 1.453971e+05 \n", + "max NaN 3.000000 5.453235e+07 1.707665e+07 1.789639e+07 \n", "\n", " 4770 total_bags small_bags large_bags xlarge_bags \\\n", "count 6.609000e+03 6.609000e+03 6.609000e+03 6.609000e+03 6.609000e+03 \n", "unique NaN NaN NaN NaN NaN \n", "top NaN NaN NaN NaN NaN \n", "freq NaN NaN NaN NaN NaN \n", - "mean 2.211606e+04 3.530859e+05 2.417289e+05 1.044526e+05 6.904363e+03 \n", - "std 1.072192e+05 1.437152e+06 9.502994e+05 4.860348e+05 4.026778e+04 \n", + "mean 2.216469e+04 3.783667e+05 2.597775e+05 1.102065e+05 8.382739e+03 \n", + "std 9.608845e+04 1.576553e+06 1.051335e+06 5.156234e+05 4.971697e+04 \n", "min 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 \n", - "25% 0.000000e+00 9.241130e+03 6.371450e+03 4.215800e+02 0.000000e+00 \n", - "50% 1.749000e+02 5.265180e+04 3.625042e+04 6.262890e+03 0.000000e+00 \n", - "75% 4.929000e+03 1.815306e+05 1.224066e+05 4.253166e+04 9.130700e+02 \n", - "max 1.993645e+06 3.168919e+07 1.786577e+07 1.332760e+07 1.052078e+06 \n", + "25% 0.000000e+00 9.358110e+03 6.834760e+03 4.706000e+02 0.000000e+00 \n", + "50% 2.074500e+02 5.576654e+04 3.897502e+04 7.182140e+03 0.000000e+00 \n", + "75% 5.358790e+03 1.833669e+05 1.254250e+05 4.531138e+04 1.012940e+03 \n", + "max 1.993645e+06 2.735245e+07 1.791382e+07 1.063102e+07 1.181516e+06 \n", "\n", - " type geography \n", - "count 6609 6609 \n", - "unique 2 54 \n", - "top organic Hartford/Springfield \n", - "freq 3321 144 \n", - "mean NaN NaN \n", - "std NaN NaN \n", - "min NaN NaN \n", - "25% NaN NaN \n", - "50% NaN NaN \n", - "75% NaN NaN \n", - "max NaN NaN " + " type geography \n", + "count 6609 6609 \n", + "unique 2 54 \n", + "top conventional California \n", + "freq 3407 143 \n", + "mean NaN NaN \n", + "std NaN NaN \n", + "min NaN NaN \n", + "25% NaN NaN \n", + "50% NaN NaN \n", + "75% NaN NaN \n", + "max NaN NaN " ] }, - "execution_count": 8, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -1537,7 +1534,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -1600,7 +1597,7 @@ "Name: geography, dtype: int64" ] }, - "execution_count": 6, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -1611,70 +1608,70 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "New Orleans/Mobile 401\n", - "Albany 395\n", - "California 394\n", - "Seattle 388\n", - "Denver 384\n", - "Total U.S. 383\n", - "Houston 381\n", - "Orlando 381\n", - "Miami/Ft. Lauderdale 377\n", - "Jacksonville 376\n", - "Dallas/Ft. Worth 376\n", - "Syracuse 376\n", - "Midsouth 373\n", - "Richmond/Norfolk 372\n", - "Cincinnati/Dayton 372\n", - "San Francisco 371\n", - "New York 371\n", - "Boise 371\n", - "Harrisburg/Scranton 371\n", - "Detroit 369\n", - "St. Louis 369\n", - "Indianapolis 369\n", - "Los Angeles 368\n", - "Chicago 368\n", - "Northern New England 368\n", - "Boston 368\n", - "Northeast 368\n", - "Las Vegas 367\n", - "Southeast 366\n", - "Great Lakes 366\n", - "Charlotte 365\n", - "Nashville 365\n", - "South Central 365\n", - "Tampa 365\n", - "West Tex/New Mexico 365\n", - "Louisville 364\n", - "Sacramento 364\n", - "Phoenix/Tucson 364\n", - "Spokane 363\n", - "San Diego 363\n", - "Philadelphia 362\n", - "Grand Rapids 362\n", - "South Carolina 361\n", - "Pittsburgh 359\n", - "Buffalo/Rochester 357\n", - "Baltimore/Washington 357\n", - "Raleigh/Greensboro 356\n", - "Columbus 355\n", - "Roanoke 350\n", - "Atlanta 349\n", - "West 348\n", - "Portland 347\n", - "Plains 346\n", - "Hartford/Springfield 316\n", + "California 143\n", + "Grand Rapids 139\n", + "Roanoke 139\n", + "Las Vegas 139\n", + "Spokane 137\n", + "Plains 135\n", + "Seattle 134\n", + "Louisville 132\n", + "Atlanta 131\n", + "Syracuse 130\n", + "New York 130\n", + "Nashville 129\n", + "Raleigh/Greensboro 129\n", + "Miami/Ft. Lauderdale 128\n", + "Phoenix/Tucson 128\n", + "Orlando 128\n", + "Hartford/Springfield 127\n", + "San Francisco 127\n", + "South Central 127\n", + "Charlotte 126\n", + "Richmond/Norfolk 126\n", + "West 126\n", + "Tampa 124\n", + "Los Angeles 124\n", + "South Carolina 122\n", + "Great Lakes 122\n", + "Total U.S. 122\n", + "Northeast 121\n", + "Cincinnati/Dayton 121\n", + "Columbus 121\n", + "Baltimore/Washington 119\n", + "Pittsburgh 119\n", + "Jacksonville 119\n", + "Portland 119\n", + "West Tex/New Mexico 118\n", + "Midsouth 118\n", + "Houston 117\n", + "Chicago 116\n", + "Buffalo/Rochester 116\n", + "New Orleans/Mobile 116\n", + "Philadelphia 115\n", + "San Diego 115\n", + "Indianapolis 115\n", + "Northern New England 114\n", + "Boston 114\n", + "Boise 114\n", + "Southeast 114\n", + "Dallas/Ft. Worth 113\n", + "Detroit 113\n", + "Albany 112\n", + "Denver 111\n", + "St. Louis 111\n", + "Harrisburg/Scranton 104\n", + "Sacramento 100\n", "Name: geography, dtype: int64" ] }, - "execution_count": 18, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -1685,70 +1682,70 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "New Orleans/Mobile 401\n", - "Albany 395\n", - "California 394\n", - "Seattle 388\n", - "Denver 384\n", - "Total U.S. 383\n", - "Houston 381\n", - "Orlando 381\n", - "Miami/Ft. Lauderdale 377\n", - "Jacksonville 376\n", - "Dallas/Ft. Worth 376\n", - "Syracuse 376\n", - "Midsouth 373\n", - "Richmond/Norfolk 372\n", - "Cincinnati/Dayton 372\n", - "San Francisco 371\n", - "New York 371\n", - "Boise 371\n", - "Harrisburg/Scranton 371\n", - "Detroit 369\n", - "St. Louis 369\n", - "Indianapolis 369\n", - "Los Angeles 368\n", - "Chicago 368\n", - "Northern New England 368\n", - "Boston 368\n", - "Northeast 368\n", - "Las Vegas 367\n", - "Southeast 366\n", - "Great Lakes 366\n", - "Charlotte 365\n", - "Nashville 365\n", - "South Central 365\n", - "Tampa 365\n", - "West Tex/New Mexico 365\n", - "Louisville 364\n", - "Sacramento 364\n", - "Phoenix/Tucson 364\n", - "Spokane 363\n", - "San Diego 363\n", - "Philadelphia 362\n", - "Grand Rapids 362\n", - "South Carolina 361\n", - "Pittsburgh 359\n", - "Buffalo/Rochester 357\n", - "Baltimore/Washington 357\n", - "Raleigh/Greensboro 356\n", - "Columbus 355\n", - "Roanoke 350\n", - "Atlanta 349\n", - "West 348\n", - "Portland 347\n", - "Plains 346\n", - "Hartford/Springfield 316\n", + "Sacramento 404\n", + "Albany 398\n", + "Northern New England 390\n", + "Harrisburg/Scranton 388\n", + "St. Louis 385\n", + "Columbus 384\n", + "Boise 382\n", + "Indianapolis 381\n", + "Detroit 380\n", + "South Carolina 378\n", + "West Tex/New Mexico 378\n", + "Southeast 378\n", + "Nashville 377\n", + "Denver 377\n", + "Los Angeles 377\n", + "Great Lakes 376\n", + "San Diego 375\n", + "Cincinnati/Dayton 374\n", + "Boston 374\n", + "South Central 373\n", + "New Orleans/Mobile 373\n", + "Richmond/Norfolk 371\n", + "Seattle 371\n", + "Total U.S. 371\n", + "Buffalo/Rochester 370\n", + "Northeast 369\n", + "Charlotte 368\n", + "Atlanta 368\n", + "Chicago 367\n", + "San Francisco 366\n", + "Midsouth 366\n", + "Philadelphia 365\n", + "New York 363\n", + "Portland 363\n", + "Syracuse 362\n", + "Grand Rapids 361\n", + "Louisville 361\n", + "Roanoke 361\n", + "Dallas/Ft. Worth 360\n", + "Orlando 359\n", + "Tampa 359\n", + "Houston 359\n", + "Hartford/Springfield 358\n", + "Pittsburgh 357\n", + "West 356\n", + "Miami/Ft. Lauderdale 354\n", + "Baltimore/Washington 353\n", + "Phoenix/Tucson 353\n", + "Raleigh/Greensboro 345\n", + "Jacksonville 344\n", + "Las Vegas 339\n", + "California 336\n", + "Plains 335\n", + "Spokane 335\n", "Name: geography, dtype: int64" ] }, - "execution_count": 24, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -1759,7 +1756,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -1768,13 +1765,13 @@ "" ] }, - "execution_count": 21, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEvCAYAAACnuq2HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXPklEQVR4nO3df7BfdX3n8efLRPxZJJgr1SSYVFN3gtVKU8R122lhF4JFw1h1YeqS1azZadHq2hkFd3bZVZkR1y0rVemmEg0u5YdUJa0om0Uq7lZ+BEEQkHIX1CQDEkkAq1sw9L1/fD8pX673kuR+b+4JOc/HzJ37Pe/zOd/v+ztz4ZVzzueck6pCktRvT+u6AUlS9wwDSZJhIEkyDCRJGAaSJAwDSRIwt+sGpmv+/Pm1ePHirtuQpKeUG2+88UdVNTax/pQNg8WLF7Np06au25Ckp5Qk35+s7mEiSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgSeIpfNHZU8Xi07/cdQsHjO995He6buGA4t/mzHqq/326ZyBJMgwkSXsQBknWJbk/yXcm1N+V5LtJbkvy0aH6GUnGk9yZ5Pih+opWG09y+lB9SZLrWv2SJAfN1JeTJO2ZPdkz+CywYriQ5LeBlcArq+oI4GOtvgw4GTiibfOpJHOSzAE+CZwALANOaWMBzgbOqaqXAjuA1aN+KUnS3tltGFTVNcD2CeXfBz5SVY+0Mfe3+krg4qp6pKruAcaBo9rPeFXdXVWPAhcDK5MEOAa4rG2/HjhptK8kSdpb0z1n8MvAb7TDO19P8uutvgDYPDRuS6tNVX8+8GBV7ZxQlyTNoulOLZ0LHAocDfw6cGmSX5qxrqaQZA2wBuDwww/f1x8nSb0x3T2DLcAXauB64B+A+cBWYNHQuIWtNlX9AeCQJHMn1CdVVWuranlVLR8b+7kH9UiSpmm6YfAl4LcBkvwycBDwI2ADcHKSZyRZAiwFrgduAJa2mUMHMTjJvKGqCrgaeFN731XA5dPsSZI0Tbs9TJTkIuC3gPlJtgBnAuuAdW266aPAqvY/9tuSXArcDuwETquqx9r7vBO4EpgDrKuq29pHvB+4OMmHgZuA82fw+0mS9sBuw6CqTpli1VunGH8WcNYk9SuAKyap381gtpEkqSNegSxJMgwkSYaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSexBGCRZl+T+9lSziev+KEklmd+Wk+TcJONJbkly5NDYVUnuaj+rhuq/luTWts25STJTX06StGf2ZM/gs8CKicUki4DjgB8MlU9g8NzjpcAa4Lw29lAGj8t8NYOnmp2ZZF7b5jzgHUPb/dxnSZL2rd2GQVVdA2yfZNU5wPuAGqqtBC6ogWuBQ5K8EDge2FhV26tqB7ARWNHWHVxV17ZnKF8AnDTSN5Ik7bVpnTNIshLYWlXfnrBqAbB5aHlLqz1ZfcskdUnSLJq7txskeTbwAQaHiGZVkjUMDj9x+OGHz/bHS9IBazp7Bi8BlgDfTvI9YCHwrSS/CGwFFg2NXdhqT1ZfOEl9UlW1tqqWV9XysbGxabQuSZrMXodBVd1aVS+oqsVVtZjBoZ0jq+o+YANwaptVdDTwUFXdC1wJHJdkXjtxfBxwZVv3cJKj2yyiU4HLZ+i7SZL20J5MLb0I+CbwsiRbkqx+kuFXAHcD48CfAX8AUFXbgQ8BN7SfD7Yabcyn2zb/F/jK9L6KJGm6dnvOoKpO2c36xUOvCzhtinHrgHWT1DcBL99dH5KkfccrkCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkiT170tm6JPcn+c5Q7b8k+W6SW5J8MckhQ+vOSDKe5M4kxw/VV7TaeJLTh+pLklzX6pckOWgGv58kaQ/syZ7BZ4EVE2obgZdX1SuAvwXOAEiyDDgZOKJt86kkc5LMAT4JnAAsA05pYwHOBs6pqpcCO4Ane6ymJGkf2G0YVNU1wPYJtf9ZVTvb4rXAwvZ6JXBxVT1SVfcweK7xUe1nvKrurqpHgYuBlUkCHANc1rZfD5w02leSJO2tmThn8HYef4j9AmDz0LotrTZV/fnAg0PBsqsuSZpFI4VBkn8P7AQunJl2dvt5a5JsSrJp27Zts/GRktQL0w6DJP8aOBH4vaqqVt4KLBoatrDVpqo/ABySZO6E+qSqam1VLa+q5WNjY9NtXZI0wbTCIMkK4H3AG6rqp0OrNgAnJ3lGkiXAUuB64AZgaZs5dBCDk8wbWohcDbypbb8KuHx6X0WSNF17MrX0IuCbwMuSbEmyGvgE8AvAxiQ3J/lTgKq6DbgUuB34KnBaVT3Wzgm8E7gSuAO4tI0FeD/w3iTjDM4hnD+j31CStFtzdzegqk6ZpDzl/7Cr6izgrEnqVwBXTFK/m8FsI0lSR7wCWZJkGEiSDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiS2LMnna1Lcn+S7wzVDk2yMcld7fe8Vk+Sc5OMJ7klyZFD26xq4+9Ksmqo/mtJbm3bnJskM/0lJUlPbk/2DD4LrJhQOx24qqqWAle1ZYATGDz3eCmwBjgPBuEBnAm8msFTzc7cFSBtzDuGtpv4WZKkfWy3YVBV1wDbJ5RXAuvb6/XASUP1C2rgWuCQJC8Ejgc2VtX2qtoBbARWtHUHV9W1VVXABUPvJUmaJdM9Z3BYVd3bXt8HHNZeLwA2D43b0mpPVt8ySV2SNItGPoHc/kVfM9DLbiVZk2RTkk3btm2bjY+UpF6Ybhj8sB3iof2+v9W3AouGxi1stSerL5ykPqmqWltVy6tq+djY2DRblyRNNN0w2ADsmhG0Crh8qH5qm1V0NPBQO5x0JXBcknntxPFxwJVt3cNJjm6ziE4dei9J0iyZu7sBSS4CfguYn2QLg1lBHwEuTbIa+D7wljb8CuB1wDjwU+BtAFW1PcmHgBvauA9W1a6T0n/AYMbSs4CvtB9J0izabRhU1SlTrDp2krEFnDbF+6wD1k1S3wS8fHd9SJL2Ha9AliQZBpIkw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkRgyDJP8uyW1JvpPkoiTPTLIkyXVJxpNckuSgNvYZbXm8rV889D5ntPqdSY4f8TtJkvbStMMgyQLgD4HlVfVyYA5wMnA2cE5VvRTYAaxum6wGdrT6OW0cSZa17Y4AVgCfSjJnun1JkvbeqIeJ5gLPSjIXeDZwL3AMcFlbvx44qb1e2ZZp649Nkla/uKoeqap7GDw/+agR+5Ik7YVph0FVbQU+BvyAQQg8BNwIPFhVO9uwLcCC9noBsLltu7ONf/5wfZJtJEmzYJTDRPMY/Kt+CfAi4DkMDvPsM0nWJNmUZNO2bdv25UdJUq+McpjonwP3VNW2qvoZ8AXgtcAh7bARwEJga3u9FVgE0NY/D3hguD7JNk9QVWuranlVLR8bGxuhdUnSsFHC4AfA0Ume3Y79HwvcDlwNvKmNWQVc3l5vaMu09V+rqmr1k9tsoyXAUuD6EfqSJO2lubsfMrmqui7JZcC3gJ3ATcBa4MvAxUk+3Grnt03OBz6XZBzYzmAGEVV1W5JLGQTJTuC0qnpsun1JkvbetMMAoKrOBM6cUL6bSWYDVdXfA2+e4n3OAs4apRdJ0vR5BbIkyTCQJBkGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJDFiGCQ5JMllSb6b5I4kr0lyaJKNSe5qv+e1sUlybpLxJLckOXLofVa18XclWTX1J0qS9oVR9ww+Dny1qv4J8ErgDuB04KqqWgpc1ZYBTmDwfOOlwBrgPIAkhzJ4WtqrGTwh7cxdASJJmh3TDoMkzwN+k/aM46p6tKoeBFYC69uw9cBJ7fVK4IIauBY4JMkLgeOBjVW1vap2ABuBFdPtS5K090bZM1gCbAM+k+SmJJ9O8hzgsKq6t425DzisvV4AbB7afkurTVWXJM2SUcJgLnAkcF5VvQr4CY8fEgKgqgqoET7jCZKsSbIpyaZt27bN1NtKUu+NEgZbgC1VdV1bvoxBOPywHf6h/b6/rd8KLBrafmGrTVX/OVW1tqqWV9XysbGxEVqXJA2bdhhU1X3A5iQva6VjgduBDcCuGUGrgMvb6w3AqW1W0dHAQ+1w0pXAcUnmtRPHx7WaJGmWzB1x+3cBFyY5CLgbeBuDgLk0yWrg+8Bb2tgrgNcB48BP21iqanuSDwE3tHEfrKrtI/YlSdoLI4VBVd0MLJ9k1bGTjC3gtCneZx2wbpReJEnT5xXIkiTDQJJkGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJYgbCIMmcJDcl+au2vCTJdUnGk1zSHolJkme05fG2fvHQe5zR6ncmOX7UniRJe2cm9gzeDdwxtHw2cE5VvRTYAaxu9dXAjlY/p40jyTLgZOAIYAXwqSRzZqAvSdIeGikMkiwEfgf4dFsOcAxwWRuyHjipvV7Zlmnrj23jVwIXV9UjVXUPMA4cNUpfkqS9M+qewX8D3gf8Q1t+PvBgVe1sy1uABe31AmAzQFv/UBv/j/VJtnmCJGuSbEqyadu2bSO2LknaZdphkORE4P6qunEG+3lSVbW2qpZX1fKxsbHZ+lhJOuDNHWHb1wJvSPI64JnAwcDHgUOSzG3/+l8IbG3jtwKLgC1J5gLPAx4Yqu8yvI0kaRZMe8+gqs6oqoVVtZjBCeCvVdXvAVcDb2rDVgGXt9cb2jJt/deqqlr95DbbaAmwFLh+un1JkvbeKHsGU3k/cHGSDwM3Aee3+vnA55KMA9sZBAhVdVuSS4HbgZ3AaVX12D7oS5I0hRkJg6r6a+Cv2+u7mWQ2UFX9PfDmKbY/CzhrJnqRJO09r0CWJBkGkiTDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiRGCIMki5JcneT2JLcleXerH5pkY5K72u95rZ4k5yYZT3JLkiOH3mtVG39XklVTfaYkad8YZc9gJ/BHVbUMOBo4Lcky4HTgqqpaClzVlgFOYPB846XAGuA8GIQHcCbwagZPSDtzV4BIkmbHtMOgqu6tqm+11z8G7gAWACuB9W3YeuCk9nolcEENXAsckuSFwPHAxqraXlU7gI3Aiun2JUnaezNyziDJYuBVwHXAYVV1b1t1H3BYe70A2Dy02ZZWm6o+2eesSbIpyaZt27bNROuSJGYgDJI8F/gL4D1V9fDwuqoqoEb9jKH3W1tVy6tq+djY2Ey9rST13khhkOTpDILgwqr6Qiv/sB3+of2+v9W3AouGNl/YalPVJUmzZJTZRAHOB+6oqj8eWrUB2DUjaBVw+VD91Dar6GjgoXY46UrguCTz2onj41pNkjRL5o6w7WuBfwXcmuTmVvsA8BHg0iSrge8Db2nrrgBeB4wDPwXeBlBV25N8CLihjftgVW0foS9J0l6adhhU1f8GMsXqYycZX8BpU7zXOmDddHuRJI3GK5AlSYaBJMkwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJIn9KAySrEhyZ5LxJKd33Y8k9cl+EQZJ5gCfBE4AlgGnJFnWbVeS1B/7RRgARwHjVXV3VT0KXAys7LgnSeqNaT8DeYYtADYPLW8BXj1xUJI1wJq2+HdJ7pyF3vpgPvCjrpvYnZzddQfqiH+fM+vFkxX3lzDYI1W1FljbdR8HmiSbqmp5131Ik/Hvc3bsL4eJtgKLhpYXtpokaRbsL2FwA7A0yZIkBwEnAxs67kmSemO/OExUVTuTvBO4EpgDrKuq2zpuq0889Kb9mX+fsyBV1XUPkqSO7S+HiSRJHTIMJEmGgSTJMJAksZ/MJtLsSfLeJ1tfVX88W71Ik0lyGnBhVT3YlucBp1TVpzpt7ADnnkH//MJufqSuvWNXEABU1Q7gHd210w/uGfRMVf3nrnuQdmNOklSb997uanxQxz0d8AyDnkryTGA1cATwzF31qnp7Z01JA18FLkny39vyv2017UMeJuqvzwG/CBwPfJ3B/aB+3GlH0sD7gauB328/VwHv67SjHvAK5J5KclNVvSrJLVX1iiRPB75RVUd33Zuk2edhov76Wfv9YJKXA/cBL+iwH/Vckkur6i1JbgV+7l+pVfWKDtrqDcOgv9a2KXv/gcEdYp8L/MduW1LPvbv9PrHTLnrKw0SSJPcM+irJM4DfBRYz9HdQVR/sqicJIMkbgbMZHLZM+6mqOrjTxg5whkF/XQ48BNwIPNJxL9KwjwKvr6o7um6kTwyD/lpYVSu6bkKaxA8NgtlnGPTX3yT5laq6tetGpAk2JbkE+BJDe61V9YXOOuoBTyD3VJLbgZcC9zD4D27XcVmn76lTST4zSbm8On7fMgx6KsmLJ6tX1fdnuxdJ3TMMeizJK4HfaIvfqKpvd9mPBN43qyvem6inkrwbuJDB9L0XAP8jybu67UoCvG9WJ9wz6KkktwCvqaqftOXnAN/0nIG65n2zuuGeQX8FeGxo+bFWk7o28b5Zz8P7Zu1zTi3tr88A1yX5Yls+CTi/u3akf+R9szrgYaIeS3Ik8M/a4jeq6qYu+5HUHcOgZ5IcXFUPJzl0svVVtX22e5KGJXnvJOWHgBur6uZZbqc3DIOeSfJXVXViknt44j3jd1109ksdtSYBkOTPgeXAX7bSicAtDG6q+Pmq+mhHrR3QDANJ+5Uk1wCvq6q/a8vPBb4MrGCwd7Csy/4OVM4m6qkkV+1JTerAC3jinXR/BhxWVf8P77C7zzibqGfa1Z3PBua3GRu7ppMeDCzorDHpcRcymOl2eVt+PfDn7VqY27tr68DmYaKeaVcevwd4EbCVx8PgYeDPquoTHbUmkSQMrjg+DHhtK/+fqtrUXVf9YBj0VJJ3VdWfdN2HNFGSW6vqV7ruo28Mgx5L8k/5+cdeXtBZQxKQZD3wiaq6oete+sQw6KkknwNeAtzM47elqKr6w86akoAk3wWWAt8DfoLP2pgVhkFPJbkDWFb+AWg/0561MY/Hb69+DfCgz9rYt5xa2l/fYXCbYGl/cxKD21jPB8ba6zd02VAfuGfQU0muBn4VuJ4nPmfW/+jUKW+v3g2vM+iv/9R1A9IUvL16BwyDnqqqr7djs0ur6n8leTYwp+u+JLy9eic8TNRTSd4BrAEOraqXJFkK/GlVHdtxa5K3V++AYdBTSW4GjgKuq6pXtZoX+0g95Wyi/nqkqh7dtZBkLk+8pbWkHjEM+uvrST4APCvJvwA+z+P3j5fUMx4m6qkkTwNWA8cxmKlxJfBpL0KT+skw6KkkbwS+XFXeH16Sh4l67PXA3yb5XJIT2zkDST3lnkGPJXk6cALwLxlM49tYVf+m264kdcEw6LkWCCuAtwG/WVXzO25JUgc8TNRTSU5I8lngLuB3gU/jjeuk3nLPoKeSXARcAnzFk8iSDANJkoeJ+irJG5PcleShJA8n+XGSh7vuS1I33DPoqSTjwOur6o6ue5HUPfcM+uuHBoGkXdwz6KkkH2cwe+hLPPFJZ1/oqidJ3fGq0/46GPgpg3sT7VKAYSD1kHsGkiTPGfRVkoVJvpjk/vbzF0kWdt2XpG4YBv31GWAD8KL285etJqmHPEzUU0lurqpf3V1NUj+4Z9BfDyR5a5I57eetwANdNyWpG+4Z9FSSFwN/AryGwSyivwHeVVWbO21MUicMg55Ksh54T1XtaMuHAh+rqrd325mkLniYqL9esSsIAKpqO/CqDvuR1CHDoL+elmTeroW2Z+BFiFJP+R9/f/1X4JtJPt+W3wyc1WE/kjrkOYMeS7IMOKYtfq2qbu+yH0ndMQwkSZ4zkCQZBpIkDANJEoaBJAnDQJIE/H/naCvxJmxTyQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEvCAYAAACnuq2HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXV0lEQVR4nO3df7DddX3n8efLRFC0SDBXqkkwqaTuBKqVpoDrttPCLgSLhrHqwtQlq1mz0yLVbWcU3NllF2VGrFtWqtCmEgmU8kOKklaUzSIVdys/giA/pdwFMcnwI5IAVrZg6Hv/OJ8sh8u9JLnn3nsOOc/HzJl7vu/v53vO+2Tu5HW/3+/nfL+pKiRJw+1l/W5AktR/hoEkyTCQJBkGkiQMA0kShoEkCZjd7wYma+7cubVw4cJ+tyFJLym33HLLj6tqZGz9JRsGCxcuZMOGDf1uQ5JeUpI8OF7dw0SSJMNAkmQYSJIwDCRJGAaSJAwDSRKGgSQJw0CSxEv4S2cvFQtP/Xq/W9hj/PAzv9XvFvYo/m5OrZf676d7BpIkw0CStAthkGRNkkeT3DmmfkqSHyS5K8lnu+qnJRlNcm+SY7rqy1ptNMmpXfVFSW5s9cuS7DVVH06StGt2Zc/gAmBZdyHJbwLLgbdW1cHA51p9CXACcHDb5twks5LMAr4IHAssAU5sYwHOAs6uqoOAbcDKXj+UJGn37DQMqup6YOuY8u8Cn6mqp9uYR1t9OXBpVT1dVQ8Ao8Bh7TFaVfdX1TPApcDyJAGOBK5o268Fju/tI0mSdtdkzxn8IvBr7fDOt5P8aqvPAzZ2jdvUahPVXws8XlXbx9QlSTNoslNLZwP7A0cAvwpcnuQXpqyrCSRZBawCOPDAA6f77SRpaEx2z2ATcGV13AT8EzAX2Aws6Bo3v9Umqj8G7Jdk9pj6uKpqdVUtraqlIyMvuFGPJGmSJhsGXwN+EyDJLwJ7AT8G1gEnJNk7ySJgMXATcDOwuM0c2ovOSeZ1VVXAdcB72+uuAK6aZE+SpEna6WGiJJcAvwHMTbIJOB1YA6xp002fAVa0/9jvSnI5cDewHTi5qp5tr/MR4BpgFrCmqu5qb/EJ4NIknwZuBc6fws8nSdoFOw2DqjpxglUfmGD8mcCZ49SvBq4ep34/ndlGkqQ+8RvIkiTDQJJkGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJLELoRBkjVJHm13NRu77g+TVJK5bTlJzkkymuT2JId2jV2R5L72WNFV/5Ukd7RtzkmSqfpwkqRdsyt7BhcAy8YWkywAjgZ+1FU+ls59jxcDq4Dz2tj96dwu83A6dzU7Pcmcts15wIe7tnvBe0mSptdOw6Cqrge2jrPqbODjQHXVlgMXVscNwH5JXg8cA6yvqq1VtQ1YDyxr6/atqhvaPZQvBI7v6RNJknbbpM4ZJFkObK6q749ZNQ/Y2LW8qdVerL5pnLokaQbN3t0NkuwDfJLOIaIZlWQVncNPHHjggTP99pK0x5rMnsGbgEXA95P8EJgPfC/JzwObgQVdY+e32ovV549TH1dVra6qpVW1dGRkZBKtS5LGs9thUFV3VNXrqmphVS2kc2jn0Kp6GFgHnNRmFR0BPFFVDwHXAEcnmdNOHB8NXNPWPZnkiDaL6CTgqin6bJKkXbQrU0svAb4LvDnJpiQrX2T41cD9wCjw58DvAVTVVuBTwM3tcUar0cZ8qW3zf4BvTO6jSJIma6fnDKrqxJ2sX9j1vICTJxi3BlgzTn0DcMjO+pAkTR+/gSxJMgwkSYaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSezanc7WJHk0yZ1dtT9K8oMktyf5apL9utadlmQ0yb1JjumqL2u10SSndtUXJbmx1S9LstcUfj5J0i7YlT2DC4BlY2rrgUOq6i3A3wOnASRZApwAHNy2OTfJrCSzgC8CxwJLgBPbWICzgLOr6iBgG/Bit9WUJE2DnYZBVV0PbB1T+x9Vtb0t3gDMb8+XA5dW1dNV9QCd+xof1h6jVXV/VT0DXAosTxLgSOCKtv1a4PjePpIkaXdNxTmDD/HcTeznARu71m1qtYnqrwUe7wqWHXVJ0gzqKQyS/EdgO3Dx1LSz0/dblWRDkg1btmyZibeUpKEw6TBI8m+B44Dfqapq5c3Agq5h81ttovpjwH5JZo+pj6uqVlfV0qpaOjIyMtnWJUljTCoMkiwDPg68u6qe6lq1Djghyd5JFgGLgZuAm4HFbebQXnROMq9rIXId8N62/Qrgqsl9FEnSZO3K1NJLgO8Cb06yKclK4AvAzwHrk9yW5E8Bquou4HLgbuCbwMlV9Ww7J/AR4BrgHuDyNhbgE8AfJBmlcw7h/Cn9hJKknZq9swFVdeI45Qn/w66qM4Ezx6lfDVw9Tv1+OrONJEl94jeQJUmGgSTJMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSSJXbvT2Zokjya5s6u2f5L1Se5rP+e0epKck2Q0ye1JDu3aZkUbf1+SFV31X0lyR9vmnCSZ6g8pSXpxu7JncAGwbEztVODaqloMXNuWAY6lc9/jxcAq4DzohAdwOnA4nbuanb4jQNqYD3dtN/a9JEnTbKdhUFXXA1vHlJcDa9vztcDxXfULq+MGYL8krweOAdZX1daq2gasB5a1dftW1Q1VVcCFXa8lSZohkz1ncEBVPdSePwwc0J7PAzZ2jdvUai9W3zROXZI0g3o+gdz+oq8p6GWnkqxKsiHJhi1btszEW0rSUJhsGDzSDvHQfj7a6puBBV3j5rfai9Xnj1MfV1WtrqqlVbV0ZGRkkq1LksaabBisA3bMCFoBXNVVP6nNKjoCeKIdTroGODrJnHbi+GjgmrbuySRHtFlEJ3W9liRphsze2YAklwC/AcxNsonOrKDPAJcnWQk8CLy/Db8aeCcwCjwFfBCgqrYm+RRwcxt3RlXtOCn9e3RmLL0S+EZ7SJJm0E7DoKpOnGDVUeOMLeDkCV5nDbBmnPoG4JCd9SFJmj5+A1mSZBhIkgwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkugxDJL8hyR3JbkzySVJXpFkUZIbk4wmuSzJXm3s3m15tK1f2PU6p7X6vUmO6fEzSZJ206TDIMk84PeBpVV1CDALOAE4Czi7qg4CtgEr2yYrgW2tfnYbR5IlbbuDgWXAuUlmTbYvSdLu6/Uw0WzglUlmA/sADwFHAle09WuB49vz5W2Ztv6oJGn1S6vq6ap6gM79kw/rsS9J0m6YdBhU1Wbgc8CP6ITAE8AtwONVtb0N2wTMa8/nARvbttvb+Nd218fZRpI0A3o5TDSHzl/1i4A3AK+ic5hn2iRZlWRDkg1btmyZzreSpKHSy2Gifwk8UFVbqupnwJXAO4D92mEjgPnA5vZ8M7AAoK1/DfBYd32cbZ6nqlZX1dKqWjoyMtJD65Kkbr2EwY+AI5Ls0479HwXcDVwHvLeNWQFc1Z6va8u09d+qqmr1E9pso0XAYuCmHvqSJO2m2TsfMr6qujHJFcD3gO3ArcBq4OvApUk+3Wrnt03OBy5KMgpspTODiKq6K8nldIJkO3ByVT072b4kSbtv0mEAUFWnA6ePKd/POLOBquofgfdN8DpnAmf20oskafL8BrIkyTCQJBkGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJNFjGCTZL8kVSX6Q5J4kb0+yf5L1Se5rP+e0sUlyTpLRJLcnObTrdVa08fclWTHxO0qSpkOvewafB75ZVf8MeCtwD3AqcG1VLQaubcsAx9K5v/FiYBVwHkCS/encLe1wOndIO31HgEiSZsakwyDJa4Bfp93juKqeqarHgeXA2jZsLXB8e74cuLA6bgD2S/J64BhgfVVtraptwHpg2WT7kiTtvl72DBYBW4AvJ7k1yZeSvAo4oKoeamMeBg5oz+cBG7u239RqE9UlSTOklzCYDRwKnFdVbwN+ynOHhACoqgKqh/d4niSrkmxIsmHLli1T9bKSNPR6CYNNwKaqurEtX0EnHB5ph39oPx9t6zcDC7q2n99qE9VfoKpWV9XSqlo6MjLSQ+uSpG6TDoOqehjYmOTNrXQUcDewDtgxI2gFcFV7vg44qc0qOgJ4oh1OugY4OsmcduL46FaTJM2Q2T1ufwpwcZK9gPuBD9IJmMuTrAQeBN7fxl4NvBMYBZ5qY6mqrUk+Bdzcxp1RVVt77EuStBt6CoOqug1YOs6qo8YZW8DJE7zOGmBNL71IkibPbyBLkgwDSZJhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSSJKQiDJLOS3Jrkb9ryoiQ3JhlNclm7JSZJ9m7Lo239wq7XOK3V701yTK89SZJ2z1TsGXwUuKdr+Szg7Ko6CNgGrGz1lcC2Vj+7jSPJEuAE4GBgGXBukllT0JckaRf1FAZJ5gO/BXypLQc4EriiDVkLHN+eL2/LtPVHtfHLgUur6umqegAYBQ7rpS9J0u7pdc/gvwMfB/6pLb8WeLyqtrflTcC89nwesBGgrX+ijf//9XG2eZ4kq5JsSLJhy5YtPbYuSdph0mGQ5Djg0aq6ZQr7eVFVtbqqllbV0pGRkZl6W0na483uYdt3AO9O8k7gFcC+wOeB/ZLMbn/9zwc2t/GbgQXApiSzgdcAj3XVd+jeRpI0Aya9Z1BVp1XV/KpaSOcE8Leq6neA64D3tmErgKva83Vtmbb+W1VVrX5Cm220CFgM3DTZviRJu6+XPYOJfAK4NMmngVuB81v9fOCiJKPAVjoBQlXdleRy4G5gO3ByVT07DX1JkiYwJWFQVX8L/G17fj/jzAaqqn8E3jfB9mcCZ05FL5Kk3ec3kCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkiR7CIMmCJNcluTvJXUk+2ur7J1mf5L72c06rJ8k5SUaT3J7k0K7XWtHG35dkxUTvKUmaHr3sGWwH/rCqlgBHACcnWQKcClxbVYuBa9sywLF07m+8GFgFnAed8ABOBw6nc4e003cEiCRpZkw6DKrqoar6Xnv+E+AeYB6wHFjbhq0Fjm/PlwMXVscNwH5JXg8cA6yvqq1VtQ1YDyybbF+SpN03JecMkiwE3gbcCBxQVQ+1VQ8DB7Tn84CNXZttarWJ6uO9z6okG5Js2LJly1S0LkliCsIgyauBvwI+VlVPdq+rqgKq1/foer3VVbW0qpaOjIxM1ctK0tDrKQySvJxOEFxcVVe28iPt8A/t56OtvhlY0LX5/FabqC5JmiG9zCYKcD5wT1X9cdeqdcCOGUErgKu66ie1WUVHAE+0w0nXAEcnmdNOHB/dapKkGTK7h23fAfwb4I4kt7XaJ4HPAJcnWQk8CLy/rbsaeCcwCjwFfBCgqrYm+RRwcxt3RlVt7aEvSdJumnQYVNX/AjLB6qPGGV/AyRO81hpgzWR7kST1xm8gS5IMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kSAxQGSZYluTfJaJJT+92PJA2TgQiDJLOALwLHAkuAE5Ms6W9XkjQ8BiIMgMOA0aq6v6qeAS4Flve5J0kaGpO+B/IUmwds7FreBBw+dlCSVcCqtvgPSe6dgd6GwVzgx/1uYmdyVr87UJ/4+zm13jhecVDCYJdU1Wpgdb/72NMk2VBVS/vdhzQefz9nxqAcJtoMLOhant9qkqQZMChhcDOwOMmiJHsBJwDr+tyTJA2NgThMVFXbk3wEuAaYBaypqrv63NYw8dCbBpm/nzMgVdXvHiRJfTYoh4kkSX1kGEiSDANJkmEgSWJAZhNp5iU5Gbi4qh5vy3OAE6vq3L42pqGV5A9ebH1V/fFM9TKM3DMYXh/eEQQAVbUN+HD/2pH4uZ08NI3cMxhes5Kk2tziduXYvfrck4ZYVf3XfvcwzAyD4fVN4LIkf9aW/32rSX2V5BXASuBg4BU76lX1ob41NQQ8TDS8PgFcB/xue1wLfLyvHUkdFwE/DxwDfJvOtcp+0teOhoDfQJY0UJLcWlVvS3J7Vb0lycuB71TVEf3ubU/mYaIhk+Tyqnp/kjuAF/wlUFVv6UNbUreftZ+PJzkEeBh4XR/7GQqGwfD5aPt5XF+7kCa2uk11/k90rl78auA/97elPZ+HiSRJ7hkMqyTvAc6is/ud9qiq2revjWnoJdkb+G1gIV3/R1XVGf3qaRgYBsPrs8C7quqefjcijXEV8ARwC/B0n3sZGobB8HrEINCAml9Vy/rdxLAxDIbXhiSXAV+j66+vqrqybx1JHX+X5Jeq6o5+NzJMPIE8pJJ8eZxy+S1P9VuSu4GDgAfo/KGy43yW056nkWEgaaAkeeN49ap6cKZ7GSaGwZDy+i8aZEneCvxaW/xOVX2/n/0MA69NNLy8/osGUpKPAhfTmfb8OuAvkpzS3672fO4ZDCmv/6JBleR24O1V9dO2/Crgu54zmF7uGQyvsdd/eQ1e/0WDIcCzXcvPtpqmkVNLh5fXf9Gg+jJwY5KvtuXjgfP7185w8DCRpIGT5FDgX7TF71TVrf3sZxgYBkNqgpuPPwHcUlW3zXA7Ekn2raonk+w/3vqq2jrTPQ0Tw2BIJflLYCnw1610HHA7nYuDfaWqPtun1jSkkvxNVR2X5AGef6+NHV86+4U+tTYUDIMhleR64J1V9Q9t+dXA14FldPYOlvSzP0kzy9lEw+t1PP+KkD8DDqiq/4tXilQfJbl2V2qaWs4mGl4X05mxcVVbfhfwl21O9939a0vDqn0rfh9gbpvptmM66b7AvL41NiQ8TDSEkoTON44PAN7Ryv+7qjb0rysNu/bN448BbwA281wYPAn8eVV9oU+tDQXDYEgluaOqfqnffUhjJTmlqv6k330MG8NgSCVZC3yhqm7udy/SWEn+OS+87eWFfWtoCBgGQyrJD4DFwA+Bn+I14zUgklwEvAm4jecuS1FV9ft9a2oIGAZDql0zfg7PXSb4euBxrxmvfktyD7Ck/M9pRjm1dHgdT+cy1nOBkfb83f1sSGrupHN5dc0g9wyGlJcJ1qBKch3wy8BNPP/+3P6xMo38nsHw8jLBGlT/pd8NDCPDYHh5mWANpKr6djuntbiq/meSfYBZ/e5rT+dhoiHmZYI1iJJ8GFgF7F9Vb0qyGPjTqjqqz63t0QwDSQMlyW3AYcCNVfW2VvNLktPM2USSBs3TVfXMjoUks3n+Ja01DQwDSYPm20k+Cbwyyb8CvsJz993QNPEwkaSBkuRlwErgaDoz3K4BvuSX0KaXYSBpoCR5D/D1qvK+GjPIw0SSBs27gL9PclGS49o5A00z9wwkDZwkLweOBf41nenP66vq3/W3qz2bYSBpILVAWAZ8EPj1qprb55b2aB4mkjRQkhyb5ALgPuC3gS/hheumnXsGkgZKkkuAy4BveBJ55hgGkiQPE0kaLEnek+S+JE8keTLJT5I82e++9nTuGUgaKElGgXdV1T397mWYuGcgadA8YhDMPPcMJA2UJJ+nM3voazz/TmdX9qunYeA3+yQNmn2Bp+hcm2iHAgyDaeSegSTJcwaSBkuS+Um+muTR9virJPP73deezjCQNGi+DKwD3tAef91qmkYeJpI0UJLcVlW/vLOappZ7BpIGzWNJPpBkVnt8AHis303t6dwzkDRQkrwR+BPg7XRmEf0dcEpVbexrY3s4w0DSQEmyFvhYVW1ry/sDn6uqD/W3sz2bh4kkDZq37AgCgKraCrytj/0MBcNA0qB5WZI5OxbanoFfkJ1m/gNLGjT/Dfhukq+05fcBZ/axn6HgOQNJAyfJEuDItvitqrq7n/0MA8NAkuQ5A0mSYSBJwjCQJGEYSJIwDCRJwP8DT8gr8aoFiX8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1791,7 +1788,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 38, "metadata": { "scrolled": true }, @@ -1802,13 +1799,13 @@ "" ] }, - "execution_count": 22, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEvCAYAAACnuq2HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAASXElEQVR4nO3de7BdZX3G8e9jIl4LBIkUE8ZQzbQTr9AMYGmdjmkhIBrGC8WpNYOp6bR4q51RdKZNi9JBx9aKVtqUi4GigHghisqkgJdWiRyEgoA2Z0QkGS5HE0ClotBf/9hvZBNPDOfs5KyQ9f3M7Nnrfde79v6dmZM8Z737XWunqpAk9dvjui5AktQ9w0CSZBhIkgwDSRKGgSQJw0CSBMzuuoDp2n///WvBggVdlyFJjxnXXnvtD6pq7mT7HrNhsGDBAsbGxrouQ5IeM5Lctr19ThNJkgwDSZJhIEniUYRBknOS3J3kW0N9+yVZl2RDe57T+pPkjCTjSW5IcujQMcvb+A1Jlg/1/3aSG9sxZyTJzv4hJUm/2qM5M/gosHSbvlOAK6pqIXBFawMcAyxsj5XAmTAID2AVcDhwGLBqa4C0MW8YOm7b95Ik7WI7DIOq+gqweZvuZcCatr0GOH6o/7wauBrYN8mBwNHAuqraXFVbgHXA0rZv76q6uga3Tz1v6LUkSTNkup8ZHFBVd7TtO4ED2vY84PahcRtb36/q3zhJvyRpBo38AXL7i35GvhQhycokY0nGJiYmZuItJakXpnvR2V1JDqyqO9pUz92tfxNw0NC4+a1vE/D72/R/qfXPn2T8pKpqNbAaYPHixbv9t/IsOOWyrkvYo3zv9Jd2XYK0x5puGKwFlgOnt+dLh/rfmORCBh8W39sC43Lg74c+ND4KeGdVbU5yX5IjgPXA64APTbMmSVPgHys712P9j5UdhkGSjzP4q37/JBsZrAo6Hbg4yQrgNuCENvzzwLHAOHA/cBJA+0//3cA1bdypVbX1Q+m/YLBi6UnAF9pDkjSDdhgGVfWa7exaMsnYAk7ezuucA5wzSf8Y8Nwd1SFJ2nW8AlmSZBhIkgwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSYwYBkn+MslNSb6V5ONJnpjk4CTrk4wnuSjJXm3sE1p7vO1fMPQ672z930ly9Ig/kyRpiqYdBknmAW8GFlfVc4FZwInAe4EPVNWzgS3AinbICmBL6/9AG0eSRe245wBLgY8kmTXduiRJUzfqNNFs4ElJZgNPBu4AXgJc0vavAY5v28tam7Z/SZK0/gur6oGquhUYBw4bsS5J0hRMOwyqahPwfuD7DELgXuBa4J6qerAN2wjMa9vzgNvbsQ+28U8b7p/kGEnSDBhlmmgOg7/qDwaeATyFwTTPLpNkZZKxJGMTExO78q0kqVdGmSb6A+DWqpqoqp8DnwKOBPZt00YA84FNbXsTcBBA278P8MPh/kmOeYSqWl1Vi6tq8dy5c0coXZI0bJQw+D5wRJInt7n/JcDNwFXAq9qY5cClbXtta9P2X1lV1fpPbKuNDgYWAt8YoS5J0hTN3vGQyVXV+iSXAN8EHgSuA1YDlwEXJnlP6zu7HXI2cH6ScWAzgxVEVNVNSS5mECQPAidX1UPTrUuSNHXTDgOAqloFrNqm+7tMshqoqn4KvHo7r3MacNootUiSps8rkCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CSxIhhkGTfJJck+XaSW5K8KMl+SdYl2dCe57SxSXJGkvEkNyQ5dOh1lrfxG5IsH/WHkiRNzahnBh8EvlhVvwW8ALgFOAW4oqoWAle0NsAxwML2WAmcCZBkP2AVcDhwGLBqa4BIkmbGtMMgyT7Ai4GzAarqZ1V1D7AMWNOGrQGOb9vLgPNq4Gpg3yQHAkcD66pqc1VtAdYBS6dblyRp6kY5MzgYmADOTXJdkrOSPAU4oKruaGPuBA5o2/OA24eO39j6ttf/S5KsTDKWZGxiYmKE0iVJw0YJg9nAocCZVXUI8BMenhICoKoKqBHe4xGqanVVLa6qxXPnzt1ZLytJvTdKGGwENlbV+ta+hEE43NWmf2jPd7f9m4CDho6f3/q21y9JmiHTDoOquhO4Pclvtq4lwM3AWmDriqDlwKVtey3wuraq6Ajg3jaddDlwVJI57YPjo1qfJGmGzB7x+DcBFyTZC/gucBKDgLk4yQrgNuCENvbzwLHAOHB/G0tVbU7ybuCaNu7Uqto8Yl2SpCkYKQyq6npg8SS7lkwytoCTt/M65wDnjFKLJGn6vAJZkmQYSJIMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIktgJYZBkVpLrknyutQ9Osj7JeJKLkuzV+p/Q2uNt/4Kh13hn6/9OkqNHrUmSNDU748zgLcAtQ+33Ah+oqmcDW4AVrX8FsKX1f6CNI8ki4ETgOcBS4CNJZu2EuiRJj9JIYZBkPvBS4KzWDvAS4JI2ZA1wfNte1tq0/Uva+GXAhVX1QFXdCowDh41SlyRpakY9M/gn4O3A/7X204B7qurB1t4IzGvb84DbAdr+e9v4X/RPcowkaQZMOwySHAfcXVXX7sR6dvSeK5OMJRmbmJiYqbeVpD3eKGcGRwIvT/I94EIG00MfBPZNMruNmQ9satubgIMA2v59gB8O909yzCNU1eqqWlxVi+fOnTtC6ZKkYdMOg6p6Z1XNr6oFDD4AvrKq/hi4CnhVG7YcuLRtr21t2v4rq6pa/4lttdHBwELgG9OtS5I0dbN3PGTK3gFcmOQ9wHXA2a3/bOD8JOPAZgYBQlXdlORi4GbgQeDkqnpoF9QlSdqOnRIGVfUl4Ett+7tMshqoqn4KvHo7x58GnLYzapEkTZ1XIEuSDANJkmEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkiRHCIMlBSa5KcnOSm5K8pfXvl2Rdkg3teU7rT5IzkownuSHJoUOvtbyN35Bk+eg/liRpKkY5M3gQ+KuqWgQcAZycZBFwCnBFVS0ErmhtgGOAhe2xEjgTBuEBrAIOBw4DVm0NEEnSzJh2GFTVHVX1zbb9I+AWYB6wDFjThq0Bjm/by4DzauBqYN8kBwJHA+uqanNVbQHWAUunW5ckaep2ymcGSRYAhwDrgQOq6o62607ggLY9D7h96LCNrW97/ZKkGTJyGCR5KvBJ4K1Vdd/wvqoqoEZ9j6H3WplkLMnYxMTEznpZSeq9kcIgyeMZBMEFVfWp1n1Xm/6hPd/d+jcBBw0dPr/1ba//l1TV6qpaXFWL586dO0rpkqQho6wmCnA2cEtV/ePQrrXA1hVBy4FLh/pf11YVHQHc26aTLgeOSjKnfXB8VOuTJM2Q2SMceyTwJ8CNSa5vfe8CTgcuTrICuA04oe37PHAsMA7cD5wEUFWbk7wbuKaNO7WqNo9QlyRpiqYdBlX1n0C2s3vJJOMLOHk7r3UOcM50a5EkjcYrkCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CSxG4UBkmWJvlOkvEkp3RdjyT1yW4RBklmAf8MHAMsAl6TZFG3VUlSf+wWYQAcBoxX1Xer6mfAhcCyjmuSpN6Y3XUBzTzg9qH2RuDwbQclWQmsbM0fJ/nODNTWB/sDP+i6iB3Je7uuQB3x93Pneeb2duwuYfCoVNVqYHXXdexpkoxV1eKu65Am4+/nzNhdpok2AQcNtee3PknSDNhdwuAaYGGSg5PsBZwIrO24Jknqjd1imqiqHkzyRuByYBZwTlXd1HFZfeLUm3Zn/n7OgFRV1zVIkjq2u0wTSZI6ZBhIkgwDSZJhIEliN1lNpJmT5G2/an9V/eNM1SJNJsnJwAVVdU9rzwFeU1Uf6bSwPZxnBv3zazt4SF17w9YgAKiqLcAbuiunHzwz6Jmq+ruua5B2YFaSVFv33u5qvFfHNe3xDIOeSvJEYAXwHOCJW/ur6vWdFSUNfBG4KMm/tvaftT7tQk4T9df5wK8DRwNfZnA/qB91WpE08A7gKuDP2+MK4O2dVtQDXoHcU0muq6pDktxQVc9P8njgq1V1RNe1SZp5ThP118/b8z1JngvcCTy9w3rUc0kurqoTktwI/NJfqVX1/A7K6g3DoL9WtyV7f83gDrFPBf6m25LUc29pz8d1WkVPOU0kSfLMoK+SPAF4JbCAod+Dqjq1q5okgCSvAN7LYNoy7VFVtXenhe3hDIP+uhS4F7gWeKDjWqRh7wNeVlW3dF1InxgG/TW/qpZ2XYQ0ibsMgplnGPTX15I8r6pu7LoQaRtjSS4CPsPQWWtVfaqzinrAD5B7KsnNwLOBWxn8g9s6L+vyPXUqybmTdJdXx+9ahkFPJXnmZP1VddtM1yKpe4ZBjyV5AfB7rfnVqvrvLuuRwPtmdcV7E/VUkrcAFzBYvvd04N+TvKnbqiTA+2Z1wjODnkpyA/CiqvpJaz8F+LqfGahr3jerG54Z9FeAh4baD7U+qWvb3jdrH7xv1i7n0tL+OhdYn+TTrX08cHZ35Ui/4H2zOuA0UY8lORT43db8alVd12U9krpjGPRMkr2r6r4k+022v6o2z3RN0rAkb5uk+17g2qq6fobL6Q3DoGeSfK6qjktyK4+8Z/zWi85+o6PSJACSfAxYDHy2dR0H3MDgpoqfqKr3dVTaHs0wkLRbSfIV4Niq+nFrPxW4DFjK4OxgUZf17alcTdRTSa54NH1SB57OI++k+3PggKr6X7zD7i7jaqKeaVd3PhnYv63Y2LqcdG9gXmeFSQ+7gMFKt0tb+2XAx9q1MDd3V9aezWminmlXHr8VeAawiYfD4D7g36rqwx2VJpEkDK44PgA4snX/V1WNdVdVPxgGPZXkTVX1oa7rkLaV5Maqel7XdfSNYdBjSX6HX/7ay/M6K0gCkqwBPlxV13RdS58YBj2V5HzgWcD1PHxbiqqqN3dWlAQk+TawEPge8BP8ro0ZYRj0VJJbgEXlL4B2M+27Nubw8O3VvwLc43dt7FouLe2vbzG4TbC0uzmewW2s9wfmtu2Xd1lQH3hm0FNJrgJeCHyDR37PrP/o1Clvr94NrzPor7/tugBpO7y9egcMg56qqi+3udmFVfUfSZ4MzOq6Lglvr94Jp4l6KskbgJXAflX1rCQLgX+pqiUdlyZ5e/UOGAY9leR64DBgfVUd0vq82EfqKVcT9dcDVfWzrY0ks3nkLa0l9Yhh0F9fTvIu4ElJ/hD4BA/fP15SzzhN1FNJHgesAI5isFLjcuAsL0KT+skw6KkkrwAuqyrvDy/JaaIeexnwP0nOT3Jc+8xAUk95ZtBjSR4PHAP8EYNlfOuq6k+7rUpSFwyDnmuBsBQ4CXhxVe3fcUmSOuA0UU8lOSbJR4ENwCuBs/DGdVJveWbQU0k+DlwEfMEPkSUZBpIkp4n6KskrkmxIcm+S+5L8KMl9XdclqRueGfRUknHgZVV1S9e1SOqeZwb9dZdBIGkrzwx6KskHGawe+gyP/KazT3VVk6TueNVpf+0N3M/g3kRbFWAYSD3kmYEkyc8M+irJ/CSfTnJ3e3wyyfyu65LUDcOgv84F1gLPaI/Ptj5JPeQ0UU8lub6qXrijPkn94JlBf/0wyWuTzGqP1wI/7LooSd3wzKCnkjwT+BDwIgariL4GvKmqbu+0MEmdMAx6Kska4K1VtaW19wPeX1Wv77YySV1wmqi/nr81CACqajNwSIf1SOqQYdBfj0syZ2ujnRl4EaLUU/7j769/AL6e5BOt/WrgtA7rkdQhPzPosSSLgJe05pVVdXOX9UjqjmEgSfIzA0mSYSBJwjCQJGEYSJIwDCRJwP8DwiNMLZUOPyIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEvCAYAAACnuq2HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAASaklEQVR4nO3de7BdZX3G8e9jIl4LBIlUE8ZQzbQTr9AMYm2djrQQFAzjrTi1ZjA1nRZvbWcUnGlpVTri2FLRSpsKGCgKiBfwyqSAl1ZFDkJBQMsZEUmGy9EEUKkX7K9/7DdlJ54Qztk5Z22yvp+ZPXu973rXPr9kMnnOete71k5VIUnqt0d0XYAkqXuGgSTJMJAkGQaSJAwDSRKGgSQJWNh1AbO1//7717Jly7ouQ5IeNq6++urvV9Xi6fY9bMNg2bJlTExMdF2GJD1sJLl1Z/ucJpIkGQaSJMNAkoRhIEniIYRBkrOS3JXkm0N9+yXZmOTm9r6o9SfJ6Ukmk1yX5JChY9a08TcnWTPU/5tJrm/HnJ4ku/sPKUl6cA/lzOBDwKod+k4ELquq5cBlrQ1wFLC8vdYBZ8AgPICTgecChwInbwuQNuZ1Q8ft+LMkSXNsl2FQVV8CtuzQvRrY0LY3AMcO9Z9TA18D9k3yJOBIYGNVbamqrcBGYFXbt3dVfa0Gz9I+Z+izJEnzZLbXDA6oqtvb9h3AAW17CXDb0LhNre/B+jdN0z+tJOuSTCSZmJqammXpkqQdjXzTWVVVknn5hpyqWg+sB1i5cuXYfyvPshM/03UJe5TvvuvFXZcg7bFme2ZwZ5viob3f1fo3AwcOjVva+h6sf+k0/ZKkeTTbM4NLgDXAu9r7xUP9r09yPoOLxfdU1e1JLgX+buii8RHASVW1Jcm9SQ4DrgReA7xvljVJmgHPXHevh/uZ6y7DIMlHgN8F9k+yicGqoHcBFyZZC9wKvLIN/yzwImASuA84HqD9p/8O4Ko27u1Vte2i9J8xWLH0GOBz7SVJmke7DIOqetVOdh0+zdgCTtjJ55wFnDVN/wTwjF3VIUmaO96BLEkyDCRJhoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEmMGAZJ/jzJDUm+meQjSR6d5KAkVyaZTHJBkr3a2Ee19mTbv2zoc05q/d9OcuSIfyZJ0gzNOgySLAHeCKysqmcAC4DjgFOB06rqacBWYG07ZC2wtfWf1saRZEU77unAKuADSRbMti5J0syNOk20EHhMkoXAY4HbgRcCF7X9G4Bj2/bq1qbtPzxJWv/5VfXTqroFmAQOHbEuSdIMzDoMqmoz8B7gewxC4B7gauDuqrq/DdsELGnbS4Db2rH3t/FPGO6f5hhJ0jwYZZpoEYPf6g8Cngw8jsE0z5xJsi7JRJKJqampufxRktQro0wT/R5wS1VNVdXPgY8Dzwf2bdNGAEuBzW17M3AgQNu/D/CD4f5pjtlOVa2vqpVVtXLx4sUjlC5JGjZKGHwPOCzJY9vc/+HAjcAVwMvbmDXAxW37ktam7b+8qqr1H9dWGx0ELAe+PkJdkqQZWrjrIdOrqiuTXAR8A7gfuAZYD3wGOD/JO1vfme2QM4Fzk0wCWxisIKKqbkhyIYMguR84oap+Mdu6JEkzN+swAKiqk4GTd+j+DtOsBqqqnwCv2MnnnAKcMkotkqTZ8w5kSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCQxYhgk2TfJRUm+leSmJM9Lsl+SjUlubu+L2tgkOT3JZJLrkhwy9Dlr2vibk6wZ9Q8lSZqZUc8M3gt8vqp+A3g2cBNwInBZVS0HLmttgKOA5e21DjgDIMl+wMnAc4FDgZO3BYgkaX7MOgyS7AO8ADgToKp+VlV3A6uBDW3YBuDYtr0aOKcGvgbsm+RJwJHAxqraUlVbgY3AqtnWJUmauVHODA4CpoCzk1yT5INJHgccUFW3tzF3AAe07SXAbUPHb2p9O+uXJM2TUcJgIXAIcEZVHQz8mAemhACoqgJqhJ+xnSTrkkwkmZiamtpdHytJvTdKGGwCNlXVla19EYNwuLNN/9De72r7NwMHDh2/tPXtrP+XVNX6qlpZVSsXL148QumSpGGzDoOqugO4Lcmvt67DgRuBS4BtK4LWABe37UuA17RVRYcB97TppEuBI5IsaheOj2h9kqR5snDE498AnJdkL+A7wPEMAubCJGuBW4FXtrGfBV4ETAL3tbFU1ZYk7wCuauPeXlVbRqxLkjQDI4VBVV0LrJxm1+HTjC3ghJ18zlnAWaPUIkmaPe9AliQZBpIkw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiR2QxgkWZDkmiSfbu2DklyZZDLJBUn2av2Pau3Jtn/Z0Gec1Pq/neTIUWuSJM3M7jgzeBNw01D7VOC0qnoasBVY2/rXAltb/2ltHElWAMcBTwdWAR9IsmA31CVJeohGCoMkS4EXAx9s7QAvBC5qQzYAx7bt1a1N2394G78aOL+qflpVtwCTwKGj1CVJmplRzwz+EXgL8L+t/QTg7qq6v7U3AUva9hLgNoC2/542/v/7pzlGkjQPZh0GSY4G7qqqq3djPbv6meuSTCSZmJqamq8fK0l7vFHODJ4PvCTJd4HzGUwPvRfYN8nCNmYpsLltbwYOBGj79wF+MNw/zTHbqar1VbWyqlYuXrx4hNIlScNmHQZVdVJVLa2qZQwuAF9eVX8IXAG8vA1bA1zcti9pbdr+y6uqWv9xbbXRQcBy4OuzrUuSNHMLdz1kxt4KnJ/kncA1wJmt/0zg3CSTwBYGAUJV3ZDkQuBG4H7ghKr6xRzUJUnaid0SBlX1BeALbfs7TLMaqKp+ArxiJ8efApyyO2qRJM2cdyBLkgwDSZJhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJIkRwiDJgUmuSHJjkhuSvKn175dkY5Kb2/ui1p8kpyeZTHJdkkOGPmtNG39zkjWj/7EkSTMxypnB/cBfVtUK4DDghCQrgBOBy6pqOXBZawMcBSxvr3XAGTAID+Bk4LnAocDJ2wJEkjQ/Zh0GVXV7VX2jbf8QuAlYAqwGNrRhG4Bj2/Zq4Jwa+Bqwb5InAUcCG6tqS1VtBTYCq2ZblyRp5nbLNYMky4CDgSuBA6rq9rbrDuCAtr0EuG3osE2tb2f9kqR5MnIYJHk88DHgzVV17/C+qiqgRv0ZQz9rXZKJJBNTU1O762MlqfdGCoMkj2QQBOdV1cdb951t+of2flfr3wwcOHT40ta3s/5fUlXrq2plVa1cvHjxKKVLkoaMspoowJnATVX1D0O7LgG2rQhaA1w81P+atqroMOCeNp10KXBEkkXtwvERrU+SNE8WjnDs84E/Aq5Pcm3rexvwLuDCJGuBW4FXtn2fBV4ETAL3AccDVNWWJO8Armrj3l5VW0aoS5I0Q7MOg6r6DyA72X34NOMLOGEnn3UWcNZsa5EkjcY7kCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CSxBiFQZJVSb6dZDLJiV3XI0l9MhZhkGQB8E/AUcAK4FVJVnRblST1x1iEAXAoMFlV36mqnwHnA6s7rkmSemNh1wU0S4DbhtqbgOfuOCjJOmBda/4oybfnobY+2B/4ftdF7EpO7boCdcR/n7vPU3a2Y1zC4CGpqvXA+q7r2NMkmaiqlV3XIU3Hf5/zY1ymiTYDBw61l7Y+SdI8GJcwuApYnuSgJHsBxwGXdFyTJPXGWEwTVdX9SV4PXAosAM6qqhs6LqtPnHrTOPPf5zxIVXVdgySpY+MyTSRJ6pBhIEkyDCRJhoEkiTFZTaT5l+QE4Lyquru1FwGvqqoPdFqYeivJXzzY/qr6h/mqpY88M+iv120LAoCq2gq8rrtyJH5lFy/NIc8M+mtBklRbW9yeHLtXxzWpx6rqb7uuoc8Mg/76PHBBkn9p7T9pfVKnkjwaWAs8HXj0tv6qem1nRfWA00T99VbgCuBP2+sy4C2dViQNnAv8KnAk8EUGzyr7YacV9YB3IEsaK0muqaqDk1xXVc9K8kjgy1V1WNe17cmcJuqZJBdW1SuTXA/80m8CVfWsDsqShv28vd+d5BnAHcATO6ynFwyD/nlTez+60yqknVvfljr/FYOnFz8e+OtuS9rzOU0kSfLMoK+SvBQ4lcHpd9qrqmrvTgtT7yV5FPAyYBlD/0dV1du7qqkPDIP+ejdwTFXd1HUh0g4uBu4BrgZ+2nEtvWEY9NedBoHG1NKqWtV1EX1jGPTXRJILgE8y9NtXVX28s4qkga8keWZVXd91IX3iBeSeSnL2NN3lXZ7qWpIbgacBtzD4RWXb9SyXPc8hw0DSWEnylOn6q+rW+a6lTwyDnvL5LxpnSZ4N/E5rfrmq/qvLevrAZxP1l89/0VhK8ibgPAbLnp8I/FuSN3Rb1Z7PM4Oe8vkvGldJrgOeV1U/bu3HAV/1msHc8sygv3Z8/ss++PwXjYcAvxhq/6L1aQ65tLS/fP6LxtXZwJVJPtHaxwJndldOPzhNJGnsJDkE+O3W/HJVXdNlPX1gGPTUTr58/B7g6qq6dp7LkUiyd1Xdm2S/6fZX1Zb5rqlPDIOeSvJhYCXwqdZ1NHAdg4eDfbSq3t1RaeqpJJ+uqqOT3ML237Wx7aazX+uotF4wDHoqyZeAF1XVj1r78cBngFUMzg5WdFmfpPnlaqL+eiLbPxHy58ABVfU/+KRIdSjJZQ+lT7uXq4n66zwGKzYubu1jgA+3Nd03dleW+qrdFf9YYP+20m3bctK9gSWdFdYTThP1UJIwuOP4AOD5rfs/q2qiu6rUd+3O4zcDTwY280AY3Av8a1W9v6PSesEw6Kkk11fVM7uuQ9pRkjdU1fu6rqNvDIOeSrIBeH9VXdV1LdKOkvwWv/y1l+d0VlAPGAY9leRbwHLgu8CP8ZnxGhNJzgWeClzLA4+lqKp6Y2dF9YBh0FPtmfGLeOAxwV8C7vaZ8epakpuAFeV/TvPKpaX9dSyDx1jvDyxu2y/psiCp+SaDx6trHnlm0FM+JljjKskVwHOAr7P993P7y8oc8j6D/vIxwRpXf9N1AX1kGPSXjwnWWKqqL7ZrWsur6t+TPBZY0HVdezqniXrMxwRrHCV5HbAO2K+qnppkOfDPVXV4x6Xt0QwDSWMlybXAocCVVXVw6/MmyTnmaiJJ4+anVfWzbY0kC9n+kdaaA4aBpHHzxSRvAx6T5PeBj/LA925ojjhNJGmsJHkEsBY4gsEKt0uBD3oT2twyDCSNlSQvBT5TVX6vxjxymkjSuDkG+O8k5yY5ul0z0BzzzEDS2EnySOAo4A8YLH/eWFV/3G1VezbDQNJYaoGwCjgeeEFV7d9xSXs0p4kkjZUkRyX5EHAz8DLgg/jgujnnmYGksZLkI8AFwOe8iDx/DANJktNEksZLkpcmuTnJPUnuTfLDJPd2XdeezjMDSWMlySRwTFXd1HUtfeKZgaRxc6dBMP88M5A0VpK8l8HqoU+y/TedfbyrmvrAO/skjZu9gfsYPJtomwIMgznkmYEkyWsGksZLkqVJPpHkrvb6WJKlXde1pzMMJI2bs4FLgCe316dan+aQ00SSxkqSa6vqObvq0+7lmYGkcfODJK9OsqC9Xg38oOui9nSeGUgaK0meArwPeB6DVURfAd5QVbd1WtgezjCQNFaSbADeXFVbW3s/4D1V9dpuK9uzOU0kadw8a1sQAFTVFuDgDuvpBcNA0rh5RJJF2xrtzMAbZOeYf8GSxs3fA19N8tHWfgVwSof19ILXDCSNnSQrgBe25uVVdWOX9fSBYSBJ8pqBJMkwkCRhGEiSMAwkSRgGkiTg/wAZuUhOdJB+3AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1825,7 +1822,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -1834,13 +1831,13 @@ "" ] }, - "execution_count": 23, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAExCAYAAACQ43JGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVeklEQVR4nO3df7BndX3f8eeLBX/EH2UpV4K7IES346zGLM4tYE07VkZYiAZiGott4g4hXdui1anTKTqTYLTMaBu1MTG0KOhqVQJRw0ZJ6AaZGBsFlrhBfmi5BRx2Z4WNi6DSksC8+8f9XP263Lv37u6937P5fp6Pme98z3mfc77f94HL63v4fM8531QVkqQ+HDF0A5Kk8TH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6smjoJ3lakpuT/FWSO5L8Zqt/LMm9SXa0x4ZWT5IPJplJcluSl4681qYkd7fHphXbK0nSvI5cwjqPAa+squ8nOQr4cpI/bsv+Q1X9wT7rnw2sa4/TgMuA05IcA1wCTAMF3Jpka1U9tBw7Ikla3KKhX7NXb32/zR7VHvu7outc4ONtu68mOTrJ8cArgG1VtRcgyTZgI/DphV7o2GOPrZNOOmkJuyFJmnPrrbf+dVVNzbdsKUf6JFkF3Aq8APhQVd2U5N8Alyb5DeAG4OKqegxYA9w/svnOVluovu97bQY2A5x44ols3759KS1Kkpok31po2ZK+yK2qJ6pqA7AWODXJi4G3Ay8E/iFwDPAfD71VqKrLq2q6qqanpub9oJIkHaQDOnunqr4L3AhsrKrdNesx4KPAqW21XcAJI5utbbWF6pKkMVnK2TtTSY5u008HXgV8o43TkyTAecDtbZOtwBvaWTynAw9X1W7geuDMJKuTrAbObDVJ0pgsZUz/eGBLG9c/Ari6qj6f5ItJpoAAO4B/3da/DjgHmAEeBS4AqKq9Sd4N3NLWe9fcl7qSpPHI4Xxr5enp6fKLXEk6MElurarp+ZZ5Ra4kdcTQl6SOGPqS1JElXZyl/Tvp4i8M3cJEue89Pzd0C9LE8khfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcRTNqUJ5ynFy2cSTif2SF+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SerIoqGf5GlJbk7yV0nuSPKbrX5ykpuSzCT5/SRPafWntvmZtvykkdd6e6t/M8lZK7ZXkqR5LeVI/zHglVX1M8AGYGOS04H3Ah+oqhcADwEXtvUvBB5q9Q+09UiyHjgfeBGwEfi9JKuWcV8kSYtYNPRr1vfb7FHtUcArgT9o9S3AeW363DZPW35GkrT6VVX1WFXdC8wApy7HTkiSlmZJY/pJViXZATwIbAP+D/Ddqnq8rbITWNOm1wD3A7TlDwN/f7Q+zzaj77U5yfYk2/fs2XPAOyRJWtiSQr+qnqiqDcBaZo/OX7hSDVXV5VU1XVXTU1NTK/U2ktSlAzp7p6q+C9wIvAw4Osncj7CsBXa16V3ACQBt+d8DvjNan2cbSdIYLOXsnakkR7fppwOvAu5iNvz/WVttE3Btm97a5mnLv1hV1ernt7N7TgbWATcv035IkpZgKT+XeDywpZ1pcwRwdVV9PsmdwFVJ/hPwNeCKtv4VwCeSzAB7mT1jh6q6I8nVwJ3A48BFVfXE8u6OJGl/Fg39qroNOGWe+j3Mc/ZNVf0/4JcWeK1LgUsPvE1J0nLwilxJ6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktSRRUM/yQlJbkxyZ5I7kryl1d+ZZFeSHe1xzsg2b08yk+SbSc4aqW9stZkkF6/MLkmSFnLkEtZ5HHhbVf1lkmcBtybZ1pZ9oKp+a3TlJOuB84EXAc8F/jTJP2iLPwS8CtgJ3JJka1XduRw7Ikla3KKhX1W7gd1t+ntJ7gLW7GeTc4Grquox4N4kM8CpbdlMVd0DkOSqtq6hL0ljckBj+klOAk4BbmqlNyW5LcmVSVa32hrg/pHNdrbaQvV932Nzku1Jtu/Zs+dA2pMkLWLJoZ/kmcBngLdW1SPAZcDzgQ3M/p/A+5ajoaq6vKqmq2p6ampqOV5SktQsZUyfJEcxG/ifrKrPAlTVAyPLPwx8vs3uAk4Y2Xxtq7GfuiRpDJZy9k6AK4C7qur9I/XjR1b7BeD2Nr0VOD/JU5OcDKwDbgZuAdYlOTnJU5j9snfr8uyGJGkplnKk/3LgV4CvJ9nRau8AXp9kA1DAfcAbAarqjiRXM/sF7ePARVX1BECSNwHXA6uAK6vqjmXbE0nSopZy9s6Xgcyz6Lr9bHMpcOk89ev2t50kaWV5Ra4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SerIoqGf5IQkNya5M8kdSd7S6sck2Zbk7va8utWT5INJZpLcluSlI6+1qa1/d5JNK7dbkqT5LOVI/3HgbVW1HjgduCjJeuBi4IaqWgfc0OYBzgbWtcdm4DKY/ZAALgFOA04FLpn7oJAkjceioV9Vu6vqL9v094C7gDXAucCWttoW4Lw2fS7w8Zr1VeDoJMcDZwHbqmpvVT0EbAM2LufOSJL274DG9JOcBJwC3AQcV1W726JvA8e16TXA/SOb7Wy1her7vsfmJNuTbN+zZ8+BtCdJWsSSQz/JM4HPAG+tqkdGl1VVAbUcDVXV5VU1XVXTU1NTy/GSkqRmSaGf5ChmA/+TVfXZVn6gDdvQnh9s9V3ACSObr221heqSpDFZytk7Aa4A7qqq948s2grMnYGzCbh2pP6GdhbP6cDDbRjoeuDMJKvbF7hntpokaUyOXMI6Lwd+Bfh6kh2t9g7gPcDVSS4EvgW8ri27DjgHmAEeBS4AqKq9Sd4N3NLWe1dV7V2OnZAkLc2ioV9VXwaywOIz5lm/gIsWeK0rgSsPpEFJ0vLxilxJ6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktSRRUM/yZVJHkxy+0jtnUl2JdnRHueMLHt7kpkk30xy1kh9Y6vNJLl4+XdFkrSYpRzpfwzYOE/9A1W1oT2uA0iyHjgfeFHb5veSrEqyCvgQcDawHnh9W1eSNEZHLrZCVX0pyUlLfL1zgauq6jHg3iQzwKlt2UxV3QOQ5Kq27p0H3rIk6WAdypj+m5Lc1oZ/VrfaGuD+kXV2ttpC9SdJsjnJ9iTb9+zZcwjtSZL2dbChfxnwfGADsBt433I1VFWXV9V0VU1PTU0t18tKkljC8M58quqBuekkHwY+32Z3ASeMrLq21dhPXZI0Jgd1pJ/k+JHZXwDmzuzZCpyf5KlJTgbWATcDtwDrkpyc5CnMftm79eDbliQdjEWP9JN8GngFcGySncAlwCuSbAAKuA94I0BV3ZHkama/oH0cuKiqnmiv8ybgemAVcGVV3bHcOyNJ2r+lnL3z+nnKV+xn/UuBS+epXwdcd0DdSZKWlVfkSlJHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHVk0dBPcmWSB5PcPlI7Jsm2JHe359WtniQfTDKT5LYkLx3ZZlNb/+4km1ZmdyRJ+7OUI/2PARv3qV0M3FBV64Ab2jzA2cC69tgMXAazHxLAJcBpwKnAJXMfFJKk8Vk09KvqS8DefcrnAlva9BbgvJH6x2vWV4GjkxwPnAVsq6q9VfUQsI0nf5BIklbYwY7pH1dVu9v0t4Hj2vQa4P6R9Xa22kJ1SdIYHfIXuVVVQC1DLwAk2Zxke5Lte/bsWa6XlSRx8KH/QBu2oT0/2Oq7gBNG1lvbagvVn6SqLq+q6aqanpqaOsj2JEnzOdjQ3wrMnYGzCbh2pP6GdhbP6cDDbRjoeuDMJKvbF7hntpokaYyOXGyFJJ8GXgEcm2Qns2fhvAe4OsmFwLeA17XVrwPOAWaAR4ELAKpqb5J3A7e09d5VVft+OSxJWmGLhn5VvX6BRWfMs24BFy3wOlcCVx5Qd5KkZeUVuZLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOHFPpJ7kvy9SQ7kmxvtWOSbEtyd3te3epJ8sEkM0luS/LS5dgBSdLSLceR/j+tqg1VNd3mLwZuqKp1wA1tHuBsYF17bAYuW4b3liQdgJUY3jkX2NKmtwDnjdQ/XrO+Chyd5PgVeH9J0gIONfQL+J9Jbk2yudWOq6rdbfrbwHFteg1w/8i2O1tNkjQmRx7i9j9bVbuSPAfYluQbowurqpLUgbxg+/DYDHDiiSceYnuSpFGHdKRfVbva84PA54BTgQfmhm3a84Nt9V3ACSObr221fV/z8qqarqrpqampQ2lPkrSPgw79JM9I8qy5aeBM4HZgK7CprbYJuLZNbwXe0M7iOR14eGQYSJI0BocyvHMc8Lkkc6/zqar6kyS3AFcnuRD4FvC6tv51wDnADPAocMEhvLck6SAcdOhX1T3Az8xT/w5wxjz1Ai462PeTJB06r8iVpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdGXvoJ9mY5JtJZpJcPO73l6SejTX0k6wCPgScDawHXp9k/Th7kKSejftI/1Rgpqruqaq/Aa4Czh1zD5LUrSPH/H5rgPtH5ncCp42ukGQzsLnNfj/JN8fUWw+OBf566CYWk/cO3YEGctj/ff4d+tt83kILxh36i6qqy4HLh+5jEiXZXlXTQ/chzce/z/EY9/DOLuCEkfm1rSZJGoNxh/4twLokJyd5CnA+sHXMPUhSt8Y6vFNVjyd5E3A9sAq4sqruGGcPnXPYTIcz/z7HIFU1dA+SpDHxilxJ6oihL0kdMfQlqSOGviR1xNCfcEkuSnL0yPzqJP92wJYkDcizdyZckh1VtWGf2teq6pSBWlLnkvz7/S2vqvePq5ceHXa3YdCyW5Uk1T7d251OnzJwT+rbs4ZuoGce6U+4JP+F2Zsv/fdWeiNwf1W9bbiuJA3F0J9wSY5gNujPaKVtwEeq6onhupIgydOAC4EXAU+bq1fVrw7WVAcMfUmDSHIN8A3gXwDvAv4lcFdVvWXQxiacoT+hklxdVa9L8nXgSf+Sq+olA7Ql/dDcCQVJbquqlyQ5Cvjzqjp96N4mmV/kTq65o6VXD9qFtLC/bc/fTfJi4NvAcwbspwuG/oSqqt3t+VtD9yIt4PIkq4FfZ/YW688EfmPYliafwzsTLslrgfcyewSV9qiqevagjUkahKE/4ZLMAK+pqruG7kUaleSpwC8CJzEy6lBV7xqqpx44vDP5HjDwdZi6FngYuBV4bOBeuuGR/oRL8tvATwJ/yMh/WFX12aF6kgCS3F5VLx66j954pD/5ng08Cpw5UivA0NfQ/iLJT1fV14dupCce6UsaRJI7gRcA9zL7f6FzJxl4DckKMvQnnJe663CV5Hnz1T3NeGV5P/3J9wlmx/TPAv4MWAt8b9COJH4Y7kcDr2mPow38lWfoT74XVNWvAz+oqi3AzwGnDdyTRJK3AJ9k9hqS5wD/I8mbh+1q8vlF7uTzUncdri4ETquqHwAkeS/wFeB3Bu1qwhn6k89L3XW4CjB6i+8nWk0ryC9yJQ2i/WziJuBzrXQe8LGq+q9D9dQDQ3/CLfB7pA8Dt1bVjjG3I/2YJC8FfrbN/nlVfW3Ifnpg6E+4JJ8CpoE/aqVXA7cxe7+Ta6rqPw/UmjqV5NlV9UiSY+ZbXlV7x91TTwz9CZfkS8A5VfX9Nv9M4AvARmaP9tcP2Z/6k+TzVfXqJPfy4z/wM3dx1k8N1FoX/CJ38j2HH7+Z1d8Cx1XV/03iTa40dlX16vZ88tC99MjQn3yfBG5Kcm2bfw3wqSTPAO4cri31LskNVXXGYjUtL4d3JliSMHsF7nHAy1v5f1XV9uG6Uu/arUF+ArgReAU/Ok3z2cCfVNULB2qtCx7pT7CqqiTXVdVPAwa9DhdvBN4KPJfZe+nPhf4jwO8O1FM3PNKfcEm2AL9bVbcM3Ys0Ksmbq8qrb8fM0J9wSb4BrAPuA36At6/VYSTJP+LJP5f48cEa6oDDO5PvLGA18I/b/JeA7w7WjdQk+QTwfGAHP7odQwGG/goy9CffecCvMftLWWH2VssfxptaaXjTwPpyuGGsHN6ZcEluA142cifDZwBfcXhHQ0tyDfDvqmr30L30xCP9yeedDHW4Oha4M8nNjFxAWFU/P1xLk8/Qn3wfZfbirNE7GV4xXDvSD71z6AZ65PBOB7yToQ5X7Xdy11XVnyb5CWBVVflznivI0Jc0iCT/CtgMHFNVz0+yDvhv3oZhZfkbuZKGchGztwd5BKCq7saf8lxxhr6koTxWVX8zN5PkSH78VstaAYa+pKH8WZJ3AE9P8irgGn70Yz9aIY7pSxpEkiOAC4EzmT2N+HrgI16stbIMfUmDSPJa4AtV5Y/5jJHDO5KG8hrgfyf5RJJXtzF9rTCP9CUNJslRwNnAP2f2WpJtVfVrw3Y12Qx9SYNqwb8RuAD4J1V17MAtTTSHdyQNIsnZST4G3A38IvAR4CcHbaoDHulLGkSSTwO/D/yxX+aOj6EvSR1xeEfSIJK8NsndSR5O8kiS7yV5ZOi+Jp1H+pIGkWQGeE1V3TV0Lz3xSF/SUB4w8MfPI31Jg0jy28yerfOH/PgvZ312qJ564BVwkobybOBRZu+9M6cAQ38FeaQvSR1xTF/SIJKsTfK5JA+2x2eSrB26r0ln6EsaykeBrcBz2+OPWk0ryOEdSYNIsqOqNixW0/LySF/SUL6T5JeTrGqPXwa+M3RTk84jfUmDSPI84HeAlzF71s5fAG+uqvsHbWzCGfqSBpFkC/DWqnqozR8D/FZV/eqwnU02h3ckDeUlc4EPUFV7gVMG7KcLhr6koRyRZPXcTDvS94LRFeY/YElDeR/wlSTXtPlfAi4dsJ8uOKYvaTBJ1gOvbLNfrKo7h+ynB4a+JHXEMX1J6oihL0kdMfQlqSOGviR15P8DdcIsibz3bXEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEvCAYAAACpPxGtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAVKklEQVR4nO3df7DldX3f8efL5YcmaljKleIuutRsJ7Mmuji3gDVtrY6wUA3ENBZmEimhru2A1UmmDTptMRpmNBNlYqK0GNDVoIi/wkZJ6AYZ0SYCi274KeWWH8PuIGxcfmhoSaDv/nE+Ww7r3b13d++eL57P8zFz5ny/7+/3e877zO6+7nc/5/P93lQVkqQ+PGfoBiRJk2PoS1JHDH1J6oihL0kdMfQlqSOGviR15KChG9iTI444olatWjV0G5L0Y+Wmm27666qamW/bgqGf5LnAdcChbf8vVNX5ST4J/DPg0bbrv66qLUkC/B5wCvB4q3+7vdaZwH9q+/92VW3Y03uvWrWKzZs3L9SiJGlMkvt2t20xZ/pPAK+rqh8mORj4ZpI/bdv+Q1V9YZf9TwZWt8fxwEXA8UkOB84HZoECbkqysaoe3ruPI0naVwuO6dfID9vqwe2xp8t4TwU+1Y77FnBYkqOAk4BNVbWjBf0mYN3+tS9J2huL+iI3ybIkW4CHGAX39W3TBUluTnJhkkNbbQVw/9jhW1ttd3VJ0oQsKvSr6qmqWgusBI5L8rPAu4GfAf4RcDjwm0vRUJL1STYn2bx9+/aleElJUrNXUzar6hHgWmBdVT3QhnCeAD4BHNd22wYcPXbYylbbXX3X97i4qmaranZmZt4vnyVJ+2jB0E8yk+Swtvw84A3Ad9s4PW22zmnAre2QjcBbM3IC8GhVPQBcDZyYZHmS5cCJrSZJmpDFzN45CtiQZBmjHxJXVNVXknwtyQwQYAvwb9v+VzGarjnHaMrmWQBVtSPJ+4Eb237vq6odS/ZJJEkLyrP5fvqzs7PlPH1J2jtJbqqq2fm2PauvyP1xseq8rw7dwlS59wP/YugWpKnlvXckqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFvuCZNOW8IuHSm4WaAnulLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktSRBUM/yXOT3JDkr5LcluS3Wv2YJNcnmUvyuSSHtPqhbX2ubV819lrvbvU7k5x0wD6VJGleiznTfwJ4XVW9ElgLrEtyAvBB4MKq+mngYeDstv/ZwMOtfmHbjyRrgNOBlwPrgI8lWbaEn0WStIAFQ79GfthWD26PAl4HfKHVNwCnteVT2zpt++uTpNUvr6onquoeYA44bik+hCRpcRY1pp9kWZItwEPAJuB/AY9U1ZNtl63Aira8ArgfoG1/FPh74/V5jpEkTcCiQr+qnqqqtcBKRmfnP3OgGkqyPsnmJJu3b99+oN5Gkrq0V7N3quoR4Frg1cBhSXbesG0lsK0tbwOOBmjbfwr4/nh9nmPG3+PiqpqtqtmZmZm9aU+StIDFzN6ZSXJYW34e8AbgDkbh/y/bbmcCV7bljW2dtv1rVVWtfnqb3XMMsBq4YYk+hyRpERZza+WjgA1tps1zgCuq6itJbgcuT/LbwHeAS9r+lwCfTjIH7GA0Y4equi3JFcDtwJPAOVX11NJ+HEnSniwY+lV1M3DsPPW7mWf2TVX9H+CXd/NaFwAX7H2bkqSl4BW5ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpIwuGfpKjk1yb5PYktyV5Z6u/N8m2JFva45SxY96dZC7JnUlOGquva7W5JOcdmI8kSdqdgxaxz5PAb1TVt5O8ALgpyaa27cKq+t3xnZOsAU4HXg68GPjzJP+wbf4o8AZgK3Bjko1VdftSfBBJ0sIWDP2qegB4oC3/IMkdwIo9HHIqcHlVPQHck2QOOK5tm6uquwGSXN72NfQlaUL2akw/ySrgWOD6Vjo3yc1JLk2yvNVWAPePHba11XZX3/U91ifZnGTz9u3b96Y9SdICFh36SZ4PfBF4V1U9BlwEvAxYy+h/Ah9aioaq6uKqmq2q2ZmZmaV4SUlSs5gxfZIczCjwL6uqLwFU1YNj2z8OfKWtbgOOHjt8Zauxh7okaQIWM3snwCXAHVX14bH6UWO7/SJwa1veCJye5NAkxwCrgRuAG4HVSY5JcgijL3s3Ls3HkCQtxmLO9F8D/CpwS5ItrfYe4Iwka4EC7gXeDlBVtyW5gtEXtE8C51TVUwBJzgWuBpYBl1bVbUv2SSRJC1rM7J1vApln01V7OOYC4IJ56lft6ThJ0oHlFbmS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHVkw9JMcneTaJLcnuS3JO1v98CSbktzVnpe3epJ8JMlckpuTvGrstc5s+9+V5MwD97EkSfNZzJn+k8BvVNUa4ATgnCRrgPOAa6pqNXBNWwc4GVjdHuuBi2D0QwI4HzgeOA44f+cPCknSZCwY+lX1QFV9uy3/ALgDWAGcCmxou20ATmvLpwKfqpFvAYclOQo4CdhUVTuq6mFgE7BuKT+MJGnP9mpMP8kq4FjgeuDIqnqgbfoecGRbXgHcP3bY1lbbXV2SNCGLDv0kzwe+CLyrqh4b31ZVBdRSNJRkfZLNSTZv3759KV5SktQsKvSTHMwo8C+rqi+18oNt2Ib2/FCrbwOOHjt8Zavtrv4MVXVxVc1W1ezMzMzefBZJ0gIWM3snwCXAHVX14bFNG4GdM3DOBK4cq7+1zeI5AXi0DQNdDZyYZHn7AvfEVpMkTchBi9jnNcCvArck2dJq7wE+AFyR5GzgPuAtbdtVwCnAHPA4cBZAVe1I8n7gxrbf+6pqx1J8CEnS4iwY+lX1TSC72fz6efYv4JzdvNalwKV706Akael4Ra4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRxYM/SSXJnkoya1jtfcm2ZZkS3ucMrbt3UnmktyZ5KSx+rpWm0ty3tJ/FEnSQhZzpv9JYN089Quram17XAWQZA1wOvDydszHkixLsgz4KHAysAY4o+0rSZqggxbaoaquS7Jqka93KnB5VT0B3JNkDjiubZurqrsBklze9r1971uWJO2r/RnTPzfJzW34Z3mrrQDuH9tna6vtri5JmqB9Df2LgJcBa4EHgA8tVUNJ1ifZnGTz9u3bl+plJUnsY+hX1YNV9VRV/V/g4zw9hLMNOHps15Wttrv6fK99cVXNVtXszMzMvrQnSdqNfQr9JEeNrf4isHNmz0bg9CSHJjkGWA3cANwIrE5yTJJDGH3Zu3Hf25Yk7YsFv8hN8lngtcARSbYC5wOvTbIWKOBe4O0AVXVbkisYfUH7JHBOVT3VXudc4GpgGXBpVd221B9GkrRni5m9c8Y85Uv2sP8FwAXz1K8Crtqr7iRJS8orciWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcWDP0klyZ5KMmtY7XDk2xKcld7Xt7qSfKRJHNJbk7yqrFjzmz735XkzAPzcSRJe7KYM/1PAut2qZ0HXFNVq4Fr2jrAycDq9lgPXASjHxLA+cDxwHHA+Tt/UEiSJmfB0K+q64Adu5RPBTa05Q3AaWP1T9XIt4DDkhwFnARsqqodVfUwsIkf/UEiSTrA9nVM/8iqeqAtfw84si2vAO4f229rq+2uLkmaoP3+IreqCqgl6AWAJOuTbE6yefv27Uv1spIk9j30H2zDNrTnh1p9G3D02H4rW2139R9RVRdX1WxVzc7MzOxje5Kk+exr6G8Eds7AORO4cqz+1jaL5wTg0TYMdDVwYpLl7QvcE1tNkjRBBy20Q5LPAq8FjkiyldEsnA8AVyQ5G7gPeEvb/SrgFGAOeBw4C6CqdiR5P3Bj2+99VbXrl8OSpANswdCvqjN2s+n18+xbwDm7eZ1LgUv3qjtJ0pLyilxJ6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0JekjuxX6Ce5N8ktSbYk2dxqhyfZlOSu9ry81ZPkI0nmktyc5FVL8QEkSYu3FGf6/7yq1lbVbFs/D7imqlYD17R1gJOB1e2xHrhoCd5bkrQXDsTwzqnAhra8AThtrP6pGvkWcFiSow7A+0uSdmN/Q7+A/57kpiTrW+3IqnqgLX8POLItrwDuHzt2a6tJkibkoP08/ueraluSFwGbknx3fGNVVZLamxdsPzzWA7zkJS/Zz/YkSeP260y/qra154eALwPHAQ/uHLZpzw+13bcBR48dvrLVdn3Ni6tqtqpmZ2Zm9qc9SdIu9jn0k/xkkhfsXAZOBG4FNgJntt3OBK5syxuBt7ZZPCcAj44NA0mSJmB/hneOBL6cZOfrfKaq/izJjcAVSc4G7gPe0va/CjgFmAMeB87aj/eWJO2DfQ79qrobeOU89e8Dr5+nXsA5+/p+kqT95xW5ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpIxMP/STrktyZZC7JeZN+f0nq2URDP8ky4KPAycAa4IwkaybZgyT1bNJn+scBc1V1d1X9LXA5cOqEe5Ckbh004fdbAdw/tr4VOH58hyTrgfVt9YdJ7pxQbz04AvjroZtYSD44dAcayLP+7+eP0d/Nl+5uw6RDf0FVdTFw8dB9TKMkm6tqdug+pPn493MyJj28sw04emx9ZatJkiZg0qF/I7A6yTFJDgFOBzZOuAdJ6tZEh3eq6skk5wJXA8uAS6vqtkn20DmHzfRs5t/PCUhVDd2DJGlCvCJXkjpi6EtSRwx9SeqIoS9JHXnWXZylpZHk1/e0vao+PKlepPkkOQe4rKoeaevLgTOq6mODNjblPNOfXi9Y4CEN7W07Ax+gqh4G3jZcO33wTH9KVdVvDd2DtIBlSVJt3ni7C+8hA/c09Qz9KZfkucDZwMuB5+6sV9WvDdaUNPJnwOeS/Le2/vZW0wHk8M70+zTw94GTgK8zut/RDwbtSBr5TeBa4N+1xzXAfxy0ow54Re6US/Kdqjo2yc1V9YokBwPfqKoThu5N0uQ5vDP9/q49P5LkZ4HvAS8asB91LskVVfWWJLcAP3LWWVWvGKCtbhj60+/iNhXuPzO6o+nzgf8ybEvq3Dvb8xsH7aJTDu9IUkc8059ySQ4FfglYxdifd1W9b6ieJIAkbwY+yGi4Me1RVfXCQRubcob+9LsSeBS4CXhi4F6kcb8DvKmq7hi6kZ4Y+tNvZVWtG7oJaR4PGviTZ+hPv79I8nNVdcvQjUi72Jzkc8AfM/a/0Kr60mAddcAvcqdcktuBnwbuYfQPa+e4qdPiNKgkn5inXF4tfmAZ+lMuyUvnq1fVfZPuRdLwDP0OJHkl8E/a6jeq6q+G7EcC7ws1FO+9M+WSvBO4jNG0uBcBf5TkHcN2JQHeF2oQnulPuSQ3A6+uqr9p6z8J/KVj+hqa94Uahmf60y/AU2PrT7WaNLRd7wv1U3hfqAPOKZvT7xPA9Um+3NZPAy4Zrh3p//O+UANweKcDSV4F/Hxb/UZVfWfIfiQNx9CfUkleWFWPJTl8vu1VtWPSPUnjkvz6POVHgZuqasuE2+mGoT+lknylqt6Y5B6eec/ynRdn/YOBWpMASPIZYBb4k1Z6I3Azo5sDfr6qfmeg1qaaoS9pEEmuA06pqh+29ecDXwXWMTrbXzNkf9PK2TtTLsk1i6lJA3gRz7zz698BR1bV/8Y7wh4wzt6ZUu1qx58AjmgzJHZO03whsGKwxqSnXcZoZtmVbf1NwGfatSS3D9fWdHN4Z0q1K3HfBbwY2MbTof8Y8PGq+oOBWpNIEkZX4B4JvKaV/0dVbR6uqz4Y+lMuyTuq6veH7kPaVZJbqurnhu6jN4Z+B5L8Y3701yV+arCGJCDJBuAPqurGoXvpiaE/5ZJ8GngZsIWnb8dQVfXvB2tKApJ8F1gN3Av8Df6uh4kw9KdckjuANeUftJ5l2u96WM7Tt/2+DnjE3/VwYDllc/rdyuj2tdKzzWmMbq98BDDTln9hyIZ64Jn+lEtyLbAWuIFn/h5S/3FpUN72exjO059+7x26AWk3vO33AAz9KVdVX29jp6ur6s+T/ASwbOi+JLzt9yAc3plySd4GrAcOr6qXJVkN/Neqev3ArUne9nsAhv6US7IFOA64vqqObTUvipE65eyd6fdEVf3tzpUkB/HMWy1L6oihP/2+nuQ9wPOSvAH4PE/fv1xSZxzemXJJngOcDZzIaGbE1cAferGW1CdDf8oleTPw1ary/uSSHN7pwJuA/5nk00ne2Mb0JXXKM/0OJDkYOBn4V4ymx22qqn8zbFeShmDod6IF/zrgLOCfVtURA7ckaQAO70y5JCcn+SRwF/BLwB/iDdikbnmmP+WSfBb4HPCnfpkrydCXpI44vDPlkrw5yV1JHk3yWJIfJHls6L4kDcMz/SmXZA54U1XdMXQvkobnmf70e9DAl7STZ/pTLsnvMZqt88c88zdnfWmoniQNx6szp98LgccZ3XtnpwIMfalDnulLUkcc059ySVYm+XKSh9rji0lWDt2XpGEY+tPvE8BG4MXt8SetJqlDDu9MuSRbqmrtQjVJffBMf/p9P8mvJFnWHr8CfH/opiQNwzP9KZfkpcDvA69mNGvnL4B3VNX9gzYmaRCG/pRLsgF4V1U93NYPB363qn5t2M4kDcHhnen3ip2BD1BVO4BjB+xH0oAM/en3nCTLd660M30vypM65T/+6fch4C+TfL6t/zJwwYD9SBqQY/odSLIGeF1b/VpV3T5kP5KGY+hLUkcc05ekjhj6ktQRQ1+SOmLoS1JHDH1J6sj/A+qwMSDo1Gd2AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1857,7 +1854,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 40, "metadata": { "scrolled": true }, @@ -1868,13 +1865,13 @@ "" ] }, - "execution_count": 30, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAASjElEQVR4nO3df4ydVZ3H8fcXSimKS1HMLJSy040ERbvuYoMYEjPKLlTYWJJF0kC0NZgmLlbcdLOCyW6pShYTkUV21TSWTTVo6aKRLj/WbYAbs39Q+SFaobLMwgDtoiiFahVwR7/7xz2FYTLTudO5P+bOeb+SSZ8f5z7nnD53PveZc899bmQmkqQ6HNbrBkiSusfQl6SKGPqSVBFDX5IqYuhLUkXm9boBB3Pcccfl4OBg24/761//mte+9rVtP26v2a/+M1f7Zr966/777/9FZr5xon2zOvQHBwe577772n7cRqPB0NBQ24/ba/ar/8zVvtmv3oqIJybb5/COJFXE0Jekihj6klQRQ1+SKmLoS1JFDH1JqoihL0kVMfQlqSKGviRVZFZ/IlfTs3PPPlZffltP6h65+rye1CtperzSl6SKGPqSVBFDX5IqYuhLUkUMfUmqiKEvSRUx9CWpIoa+JFXE0Jekihj6klQRb8Ogthjs4O0f1i0dnfT2Et7+QZoer/QlqSKGviRVxNCXpIoY+pJUEUNfkipi6EtSRQx9SaqIoS9JFTH0Jakihr4kVcTQl6SKGPqSVBFDX5Iq0lLoR8TfRMRDEfHjiPhmRCyIiCURsSMihiPipoiYX8oeWdaHy/7BMce5omx/JCLO6VCfJEmTmDL0I2IR8HFgWWa+DTgcWAl8Drg2M98EPAdcUh5yCfBc2X5tKUdEnFoe91ZgOfCliDi8vd2RJB1Mq8M784CjImIe8BrgaeC9wM1l/2bg/LK8oqxT9p8VEVG2b8nMlzLzcWAYOH3GPZAktWzKL1HJzD0R8XngSeAF4D+B+4HnM3O0FNsNLCrLi4CnymNHI2If8Iay/Z4xhx77mJdFxBpgDcDAwACNRmP6vZrC/v37O3LcXhs4qvmFI3PNwfrV7+dxrj4X7dfsNWXoR8SxNK/SlwDPA/9Gc3imIzJzI7ARYNmyZTk0NNT2OhqNBp04bq9df+MtXLNz7n0Z2rqlo5P2a+Tioe42ps3m6nPRfs1erQzv/DnweGb+PDP/D/g2cCawsAz3AJwI7CnLe4DFAGX/McCzY7dP8BhJUhe0EvpPAmdExGvK2PxZwMPA3cAFpcwq4JayvK2sU/bflZlZtq8ss3uWACcD329PNyRJrWhlTH9HRNwMPACMAj+gOfxyG7AlIj5btm0qD9kEfD0ihoG9NGfskJkPRcRWmi8Yo8Clmfm7NvdHknQQLQ0AZ+Z6YP24zY8xweybzHwR+MAkx7kKuGqabZQktYmfyJWkihj6klQRQ1+SKmLoS1JFDH1JqoihL0kVMfQlqSKGviRVxNCXpIoY+pJUEUNfkipi6EtSRQx9SaqIoS9JFTH0Jakihr4kVcTQl6SKGPqSVBFDX5IqYuhLUkUMfUmqiKEvSRUx9CWpIoa+JFXE0Jekihj6klQRQ1+SKmLoS1JFDH1JqoihL0kVMfQlqSKGviRVxNCXpIoY+pJUEUNfkirSUuhHxMKIuDkifhIRuyLiXRHx+ojYHhGPln+PLWUjIr4YEcMR8aOIOG3McVaV8o9GxKpOdUqSNLFWr/SvA/4jM98MvB3YBVwO3JmZJwN3lnWA9wEnl581wJcBIuL1wHrgncDpwPoDLxSSpO6YMvQj4hjg3cAmgMz8bWY+D6wANpdim4Hzy/IK4GvZdA+wMCKOB84Btmfm3sx8DtgOLG9jXyRJU5jXQpklwM+Bf42ItwP3A5cBA5n5dCnzU2CgLC8Cnhrz+N1l22TbXyUi1tD8C4GBgQEajUarfWnZ/v37O3LcXhs4CtYtHe11M9ruYP3q9/M4V5+L9mv2aiX05wGnAWszc0dEXMcrQzkAZGZGRLajQZm5EdgIsGzZshwaGmrHYV+l0WjQieP22vU33sI1O1s5pf1l3dLRSfs1cvFQdxvTZnP1uWi/Zq9WxvR3A7szc0dZv5nmi8DPyrAN5d9nyv49wOIxjz+xbJtsuySpS6YM/cz8KfBURJxSNp0FPAxsAw7MwFkF3FKWtwEfKrN4zgD2lWGg7wJnR8Sx5Q3cs8s2SVKXtDoWsBa4MSLmA48BH6b5grE1Ii4BngAuLGVvB84FhoHflLJk5t6I+Axwbyn36czc25ZeSJJa0lLoZ+aDwLIJdp01QdkELp3kODcAN0yjfdJBDV5+W8/qHrn6vJ7VLR0qP5ErSRUx9CWpIoa+JFVk7k3qFiMLLupJvYMvfqMn9UpqnVf6klQRQ1+SKmLoS1JFDH1JqoihL0kVMfQlqSKGviRVxHn6aptOfT6gcdgGRhasP2gZPyMgtcYrfUmqiKEvSRUx9CWpIoa+JFXE0Jekihj6klQRQ1+SKuI8/Q7o1fe2rlvak2ol9RGv9CWpIoa+JFXE0Jekihj6klQRQ1+SKmLoS1JFDH1JqoihL0kVMfQlqSKGviRVxNCXpIoY+pJUEUNfkipi6EtSRQx9SaqIoS9JFWk59CPi8Ij4QUTcWtaXRMSOiBiOiJsiYn7ZfmRZHy77B8cc44qy/ZGIOKftvZEkHdR0rvQvA3aNWf8ccG1mvgl4DrikbL8EeK5sv7aUIyJOBVYCbwWWA1+KiMNn1nxJ0nS0FPoRcSJwHvDVsh7Ae4GbS5HNwPlleUVZp+w/q5RfAWzJzJcy83FgGDi9DX2QJLWo1e/I/Sfg74DXlfU3AM9n5mhZ3w0sKsuLgKcAMnM0IvaV8ouAe8Ycc+xjXhYRa4A1AAMDAzQajRab2Lr9+/d35LgHrFs6OnWhDhg4qll347ANPam/U/YfeQKNUw7ep3W/7/7/eTueQ51+LvaK/Zq9pgz9iPhL4JnMvD8ihjrdoMzcCGwEWLZsWQ4Ntb/KRqNBJ457wOqefTH6KNfsnMfIgvU9qb9TGqdsYOiRg/dp9Yvf6FJrXjFy8dCMj9Hp52Kv2K/Zq5Ur/TOB90fEucAC4A+A64CFETGvXO2fCOwp5fcAi4HdETEPOAZ4dsz2A8Y+RpLUBVOO6WfmFZl5YmYO0nwj9q7MvBi4G7igFFsF3FKWt5V1yv67MjPL9pVlds8S4GTg+23riSRpSq2O6U/kk8CWiPgs8ANgU9m+Cfh6RAwDe2m+UJCZD0XEVuBhYBS4NDN/N4P6JUnTNK3Qz8wG0CjLjzHB7JvMfBH4wCSPvwq4arqNlCS1h5/IlaSKGPqSVBFDX5IqYuhLUkUMfUmqiKEvSRUx9CWpIoa+JFXE0JekiszkNgzSrDGy4KLuV3olcOW+7tcrzYBX+pJUEUNfkipi6EtSRQx9SaqIoS9JFXH2Tgd1e0ZJ47ANc+77cSW1l1f6klQRQ1+SKmLoS1JFDH1JqoihL0kVMfQlqSKGviRVxNCXpIoY+pJUET+RK83A4OW3zejx65aOsnqaxxi5+rwZ1am6eaUvSRUx9CWpIoa+JFXE0Jekihj6klQRQ1+SKmLoS1JFDH1JqoihL0kVMfQlqSJThn5ELI6IuyPi4Yh4KCIuK9tfHxHbI+LR8u+xZXtExBcjYjgifhQRp4051qpS/tGIWNW5bkmSJtLKlf4osC4zTwXOAC6NiFOBy4E7M/Nk4M6yDvA+4OTyswb4MjRfJID1wDuB04H1B14oJEndMWXoZ+bTmflAWf4VsAtYBKwANpdim4Hzy/IK4GvZdA+wMCKOB84Btmfm3sx8DtgOLG9nZyRJBxeZ2XrhiEHge8DbgCczc2HZHsBzmbkwIm4Frs7M/yr77gQ+CQwBCzLzs2X73wMvZObnx9WxhuZfCAwMDLxjy5YtM+nfhPbv38/RRx/d9uMesHPPPgCWHvZ4x+qYyP4jT+Dol/63q3V2w2zu187fL5nR4weOgp+9ML3HLF10zIzq7IZO/471Sr/06z3vec/9mblson0t31o5Io4GvgV8IjN/2cz5pszMiGj91eMgMnMjsBFg2bJlOTQ01I7Dvkqj0aATxz3gwK1yRxas71gdE2mcsoGhR7pbZzfM5n6tfvEbM3r8uqWjXLNzenc4H7l4aEZ1dkOnf8d6ZS70q6XZOxFxBM3AvzEzv102/6wM21D+faZs3wMsHvPwE8u2ybZLkrqkldk7AWwCdmXmF8bs2gYcmIGzCrhlzPYPlVk8ZwD7MvNp4LvA2RFxbHkD9+yyTZLUJa38XXkm8EFgZ0Q8WLZ9Crga2BoRlwBPABeWfbcD5wLDwG+ADwNk5t6I+Axwbyn36czc245OSJJaM2XolzdkY5LdZ01QPoFLJznWDcAN02mgJKl9/ESuJFXEL0bXlHZtOaFrdb1l5eycminNFYb+HLF0yUl8dP581i45qe3H3spo248pqTcc3pGkinil34cmGm7ZyihPrE22Xt/fV+VLx/2lsvPxJ3vUEmluMvSlGRhZcNGMHt84bMP0P7l9JXDlvhnVq3o5vCNJFTH0JakiDu9oVtn6j69+T2IXJ/Di2iM6Nm3UKaKqjVf6klQRQ1+SKuLwjqo2doqo00NVA6/0Jakihr4kVcTQl6SKGPqSVBFDX5IqYuhLUkUMfUmqiPP0pT40ePltPal35OrzelKv2sfQ76Dx94ZvF7/JStKhcnhHkirilb6qNvaunrvo7BfAX3jFK79u3vJBveKVviRVxCv9Ntn15re8vHzHgYXv9KIlkjQ5r/QlqSKGviRVZE4P70w2l3nd0lFWt3me8x1TF5GknpvToS/NVSMLLupRzft6VK/axeEdSaqIoS9JFalieGf8n8KNwzYwsmB9W+vo9Ad7JKkdqgh9aTaY6NO/L649gl1b2n/BMPbTv+AngPUKh3ckqSJe6UtqWau3dG73tGhv6dw+XulLUkW6fqUfEcuB64DDga9m5tXdrH/pkpP46Pz5rG3zve69x71mk7HvH0D7Jhrcwd9OuH38HUTbP1nCzwe0S1dDPyIOB/4F+AtgN3BvRGzLzIe72Q5JfebKY3pY99x6wen2lf7pwHBmPgYQEVuAFUBHQv+O7zSvSsZe5WxllCfWJluv98pcapfxM5M6NSupFy5cshSAnat29rgl7RGZ2b3KIi4AlmfmR8r6B4F3ZubHxpRZA6wpq6cAj3SgKccBv+jAcXvNfvWfudo3+9Vbf5SZb5xox6ybvZOZG4GNnawjIu7LzGWdrKMX7Ff/mat9s1+zV7dn7+wBFo9ZP7FskyR1QbdD/17g5IhYEhHzgZXAti63QZKq1dXhncwcjYiPAd+lOWXzhsx8qJttKDo6fNRD9qv/zNW+2a9Zqqtv5EqSestP5EpSRQx9SarInA79iFgeEY9ExHBEXD7B/tUR8fOIeLD8fKQX7ZyOiLghIp6JiB9Psj8i4oulzz+KiNO63cZD0UK/hiJi35hz9Q/dbuOhiIjFEXF3RDwcEQ9FxGUTlOm7c9Ziv/r1nC2IiO9HxA9L3zZMUObIiLipnLMdETHYg6Yemsyckz803yj+H+CPgfnAD4FTx5VZDfxzr9s6zX69GzgN+PEk+8+l+T3tAZwB7Oh1m9vUryHg1l638xD6dTxwWll+HfDfEzwP++6ctdivfj1nARxdlo8AdgBnjCvz18BXyvJK4KZet7vVn7l8pf/yLR8y87fAgVs+9LXM/B6w9yBFVgBfy6Z7gIURcXx3WnfoWuhXX8rMpzPzgbL8K2AXsGhcsb47Zy32qy+V87C/rB5RfsbPeFkBbC7LNwNnRUR0qYkzMpdDfxHw1Jj13Uz8pPyr8if1zRGxeIL9/abVfvejd5U/ue+IiLf2ujHTVYYA/ozmleNYfX3ODtIv6NNzFhGHR8SDwDPA9syc9Jxl5ijN24C+oauNPERzOfRb8e/AYGb+CbCdV165Nfs8QPN+Im8Hrge+09vmTE9EHA18C/hEZv6y1+1plyn61bfnLDN/l5l/SvOuAadHxNt63KS2mcuhP+UtHzLz2cx8qax+FXhHl9rWSXPyVheZ+csDf3Jn5u3AERFxXI+b1ZKIOIJmMN6Ymd+eoEhfnrOp+tXP5+yAzHweuBtYPm7Xy+csIuYBxwDPdrVxh2guh/6Ut3wYN276fprjkv1uG/ChMiPkDGBfZj7d60bNVET84YEx04g4neZzd9b/kpU2bwJ2ZeYXJinWd+eslX718Tl7Y0QsLMtH0fz+j5+MK7YNWFWWLwDuyvKu7mw36+6y2S45yS0fIuLTwH2ZuQ34eES8Hxil+Sbi6p41uEUR8U2asyKOi4jdwHqabzSRmV8Bbqc5G2QY+A3w4d60dHpa6NcFwEcjYhR4AVjZJ79kZwIfBHaWMWKATwEnQV+fs1b61a/n7HhgczS/9OkwYGtm3jouOzYBX4+IYZrZsbJ3zZ0eb8MgSRWZy8M7kqRxDH1JqoihL0kVMfQlqSKGviRVxNCXpIoY+pJUkf8H0AKAUbzzoTgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAASkElEQVR4nO3df6zddX3H8ecbSikKoyjkDkrdrZEw0I4NbxBDYq6yQYXFkgxNA9HWYLo4RFy6zGKy1apETFSGbNM0lq0asHRopAOca4ATsz+o/BCtUBl3UKAdilKoVgF39b0/zufitd7be27v+XHP/TwfyUm/Pz7n+/18+j33db7n8/2ez4nMRJJUh8N6XQFJUvcY+pJUEUNfkipi6EtSRQx9SarIvF5X4GCOP/74HBwcbPt2f/7zn/PKV76y7dvtNdvVf+Zq22xXb91///0/ycwTJlo3q0N/cHCQ++67r+3bbTQaDA8Pt327vWa7+s9cbZvt6q2IeGKydXbvSFJFDH1JqoihL0kVMfQlqSKGviRVxNCXpIoY+pJUEUNfkipi6EtSRWb1N3I1PTv27GPV2tt7su9d11zYk/1Kmh7P9CWpIoa+JFXE0Jekihj6klQRQ1+SKmLoS1JFDH1JqoihL0kVMfQlqSKGviRVxGEY1BaDHRz+Yc3S0UmHl3D4B2l6PNOXpIoY+pJUEUNfkipi6EtSRQx9SaqIoS9JFTH0Jakihr4kVcTQl6SKGPqSVBFDX5IqYuhLUkUMfUmqSEuhHxF/HREPRcT3I+IrEbEgIpZExPaIGImImyNifil7ZJkfKesHx23nqrL8kYg4v0NtkiRNYsrQj4hFwAeBocx8A3A4sAL4FHBtZr4OeA64rDzlMuC5svzaUo6IOL087/XAMuCfI+Lw9jZHknQwrXbvzAOOioh5wCuAp4G3AbeU9ZuAi8r08jJPWX9uRERZvjkzX8rMx4ER4KwZt0CS1LIpf0QlM/dExKeBJ4EXgP8E7geez8zRUmw3sKhMLwKeKs8djYh9wKvL8nvGbXr8c14WEauB1QADAwM0Go3pt2oK+/fv78h2e23gqOYPjsw1B2tXvx/HufpatF2z15ShHxHH0TxLXwI8D/wbze6ZjsjMDcAGgKGhoRweHm77PhqNBp3Ybq9df+OtfGbH3PsxtDVLRydt165Lh7tbmTabq69F2zV7tdK986fA45n548z8P+BrwDnAwtLdA3AysKdM7wEWA5T1xwLPjl8+wXMkSV3QSug/CZwdEa8offPnAg8DdwMXlzIrgVvL9NYyT1l/V2ZmWb6i3N2zBDgF+HZ7miFJakUrffrbI+IW4AFgFPgOze6X24HNEfGJsmxjecpG4MsRMQLspXnHDpn5UERsofmGMQpcnpm/anN7JEkH0VIHcGauA9YdsPgxJrj7JjNfBN45yXauBq6eZh0lSW3iN3IlqSKGviRVxNCXpIoY+pJUEUNfkipi6EtSRQx9SaqIoS9JFTH0Jakihr4kVcTQl6SKGPqSVBFDX5IqYuhLUkUMfUmqiKEvSRUx9CWpIoa+JFXE0Jekihj6klQRQ1+SKmLoS1JFDH1JqoihL0kVMfQlqSKGviRVxNCXpIoY+pJUEUNfkipi6EtSRQx9SaqIoS9JFTH0Jakihr4kVcTQl6SKtBT6EbEwIm6JiB9ExM6IeHNEvCoitkXEo+Xf40rZiIjPRcRIRHwvIs4ct52VpfyjEbGyU42SJE2s1TP964D/yMw/BM4AdgJrgTsz8xTgzjIP8HbglPJYDXweICJeBawD3gScBawbe6OQJHXHlKEfEccCbwE2AmTmLzPzeWA5sKkU2wRcVKaXA1/KpnuAhRFxInA+sC0z92bmc8A2YFkb2yJJmsK8FsosAX4M/EtEnAHcD1wJDGTm06XMD4GBMr0IeGrc83eXZZMt/y0RsZrmJwQGBgZoNBqttqVl+/fv78h2e23gKFizdLTX1Wi7g7Wr34/jXH0t2q7Zq5XQnwecCVyRmdsj4jp+05UDQGZmRGQ7KpSZG4ANAENDQzk8PNyOzf6WRqNBJ7bba9ffeCuf2dHKIe0va5aOTtquXZcOd7cybTZXX4u2a/ZqpU9/N7A7M7eX+Vtovgn8qHTbUP59pqzfAywe9/yTy7LJlkuSumTK0M/MHwJPRcSpZdG5wMPAVmDsDpyVwK1leivwnnIXz9nAvtIN9E3gvIg4rlzAPa8skyR1Sat9AVcAN0bEfOAx4L003zC2RMRlwBPAu0rZO4ALgBHgF6Usmbk3Ij4O3FvKfSwz97alFZKklrQU+pn5IDA0wapzJyibwOWTbOcG4IZp1E86qMG1t/ds37uuubBn+5YOld/IlaSKGPqSVBFDX5IqYuhLUkUMfUmqiKEvSRUx9CWpIoa+JFXE0Jekisy9IRkrtvSwx9m1YF3X9zv44k1d36ekQ+OZviRVxNCXpIoY+pJUEUNfkirihVzN2K4Fl3R0+43D1v/OBWovHkuHxjN9SaqIoS9JFTH0Jakihr4kVcQLuR3Qq99t/dczerJbSX3EM31JqoihL0kVMfQlqSKGviRVxNCXpIoY+pJUEUNfkipi6EtSRQx9SaqIoS9JFTH0Jakihr4kVcTQl6SKGPqSVBFDX5IqYuhLUkVaDv2IODwivhMRt5X5JRGxPSJGIuLmiJhflh9Z5kfK+sFx27iqLH8kIs5ve2skSQc1nTP9K4Gd4+Y/BVybma8DngMuK8svA54ry68t5YiI04EVwOuBZcA/R8ThM6u+JGk6Wgr9iDgZuBD4YpkP4G3ALaXIJuCiMr28zFPWn1vKLwc2Z+ZLmfk4MAKc1YY2SJJa1Opv5P4D8LfAMWX+1cDzmTla5ncDi8r0IuApgMwcjYh9pfwi4J5x2xz/nJdFxGpgNcDAwACNRqPFKrZu//79HdnumDVLR6cu1AH7jzyJxqnre7LvTpqoXWt+3Zv/4/Ha8Rrq9GuxV2zX7DVl6EfEnwPPZOb9ETHc6Qpl5gZgA8DQ0FAOD7d/l41Gg05sd8yqnv0w+uMMP7KuJ/vupMap63+nXatevKlHtfmNXZcOz3gbnX4t9ortmr1aOdM/B3hHRFwALAB+D7gOWBgR88rZ/snAnlJ+D7AY2B0R84BjgWfHLR8z/jmSpC6Ysk8/M6/KzJMzc5Dmhdi7MvNS4G7g4lJsJXBrmd5a5inr78rMLMtXlLt7lgCnAN9uW0skSVNqtU9/Ih8GNkfEJ4DvABvL8o3AlyNiBNhL842CzHwoIrYADwOjwOWZ+asZ7F+SNE3TCv3MbACNMv0YE9x9k5kvAu+c5PlXA1dPt5KSpPbwG7mSVBFDX5IqYuhLUkUMfUmqiKEvSRWZyS2bUs/sWnBJ1/c5OAu+BSzNlGf6klQRQ1+SKmLoS1JFDH1JqoihL0kVMfQlqSKGviRVxNCXpIoY+pJUEUNfkipi6EtSRQx9SaqIoS9JFTH0JakiDq3cIb0Y+rfB+q7vU1J/8Uxfkipi6EtSRQx9SaqIoS9JFfFCrnSIBtfePuNtrFk6yqppbmfXNRfOeL+ql2f6klQRQ1+SKmLoS1JFDH1JqoihL0kVMfQlqSKGviRVxNCXpIoY+pJUEUNfkioyZehHxOKIuDsiHo6IhyLiyrL8VRGxLSIeLf8eV5ZHRHwuIkYi4nsRcea4ba0s5R+NiJWda5YkaSKtnOmPAmsy83TgbODyiDgdWAvcmZmnAHeWeYC3A6eUx2rg89B8kwDWAW8CzgLWjb1RSJK6Y8rQz8ynM/OBMv0zYCewCFgObCrFNgEXlenlwJey6R5gYUScCJwPbMvMvZn5HLANWNbOxkiSDi4ys/XCEYPAt4A3AE9m5sKyPIDnMnNhRNwGXJOZ/1XW3Ql8GBgGFmTmJ8ryvwNeyMxPH7CP1TQ/ITAwMPDGzZs3z6R9E9q/fz9HH31027c7ZseefSw97PGObX8y+488iaNf+t+u77fTZku7dvx6Sdu3OXAU/OiF6T1n6aJj216Pduv031iv9Eu73vrWt96fmUMTrWt5aOWIOBr4KvChzPxpM+ebMjMjovV3j4PIzA3ABoChoaEcHh5ux2Z/S6PRoBPbHbNq7e3sWrCuY9ufTOPU9Qw/0v39dtpsadeqF29q+zbXLB3lMzumN8L5rkuH216Pduv031ivzIV2tXT3TkQcQTPwb8zMr5XFPyrdNpR/nynL9wCLxz395LJssuWSpC5p5e6dADYCOzPzs+NWbQXG7sBZCdw6bvl7yl08ZwP7MvNp4JvAeRFxXLmAe15ZJknqklY+V54DvBvYEREPlmUfAa4BtkTEZcATwLvKujuAC4AR4BfAewEyc29EfBy4t5T7WGbubUcj1PTw/PlcseQ1Pdn3jsef7Ml+JU3PlKFfLsjGJKvPnaB8ApdPsq0bgBumU0H1h6UdfLN5/0HezHyzkabH38iVWrRrwSVt32bjsPVTXvQf7MAFZNXL0J8Ddm4+CYDXnpBsuX604/t711W+bKR+5dg7klQRQ1+SKuLndE3blk92vgtpjF1JUnt5pi9JFTH0Jakihr4kVcTQl6SKGPqSVBFDX5IqYuhLUkW8CVqz2pZPjvLEFZMPL7GTk9q2r9NW9P7XuaROM/SlYrojhTrCp/qR3TuSVBFDX5IqYuhLUkXs0++AY05by1K697OFW+jeAGiS+ptn+pJUEc/0O6Sbww+rLoNrb+/Zvnddc2HP9q328Exfkipi6EtSRQx9SaqIffpSMd3rMDMdAsJhH9QLnulLUkUMfUmqiN070iy3a8ElXd/n4Is3dX2f6o45HfqT3c+8Zukoqzp4r/Mxp3Vs05pDli55De+fP58rHN1TXWT3jiRVxNCXpIoY+pJUkTndpz/mwAthjcPWs2vBuo7tr5sjbErSdHimL0kVqeJMX5qNpvrR98kcyjeB/favxhj6klrW6rDO7b4t2iGd28fQlyqwdJrfBTiGtRMub/U7Aod63cwvhXVe10M/IpYB1wGHA1/MzGs6ta9jTmu+cMcurI4NqPXiFUewc/PMBss6GH++ULNNu37Up5WuJbuSZreuhn5EHA78E/BnwG7g3ojYmpkPd7MekmanSYec+Gjn9nmwTxdzsVup22f6ZwEjmfkYQERsBpYDhr40R+zcfFLHP0230zf4m0nX7fz6AevW/SV8dPnMd/rRfTPfxiGKzOzeziIuBpZl5vvK/LuBN2XmB8aVWQ2sLrOnAo90oCrHAz/pwHZ7zXb1n7naNtvVW3+QmSdMtGLWXcjNzA3Ahk7uIyLuy8yhTu6jF2xX/5mrbbNds1e3v5y1B1g8bv7kskyS1AXdDv17gVMiYklEzAdWAFu7XAdJqlZXu3cyczQiPgB8k+Ytmzdk5kPdrEPR0e6jHrJd/Weuts12zVJdvZArSeotB1yTpIoY+pJUkTkd+hGxLCIeiYiRiPidwUQiYlVE/DgiHiyP9/WintMRETdExDMR8f1J1kdEfK60+XsRcWa363goWmjXcETsG3es/r7bdTwUEbE4Iu6OiIcj4qGIuHKCMn13zFpsV78eswUR8e2I+G5p2/oJyhwZETeXY7Y9IgZ7UNVDk5lz8kHzQvH/AK8F5gPfBU4/oMwq4B97XddptustwJnA9ydZfwHwDSCAs4Htva5zm9o1DNzW63oeQrtOBM4s08cA/z3B67DvjlmL7erXYxbA0WX6CGA7cPYBZf4K+EKZXgHc3Ot6t/qYy2f6Lw/5kJm/BMaGfOhrmfktYO9BiiwHvpRN9wALI+LE7tTu0LXQrr6UmU9n5gNl+mfATmDRAcX67pi12K6+VI7D/jJ7RHkceMfLcmBTmb4FODcioktVnJG5HPqLgKfGze9m4hflX5SP1LdExOIJ1vebVtvdj95cPnJ/IyJe3+vKTFfpAvgTmmeO4/X1MTtIu6BPj1lEHB4RDwLPANsyc9JjlpmjwD7g1V2t5CGay6Hfin8HBjPzj4Bt/OadW7PPAzTHEzkDuB74em+rMz0RcTTwVeBDmfnTXtenXaZoV98es8z8VWb+Mc1RA86KiDf0uEptM5dDf8ohHzLz2cx8qcx+EXhjl+rWSXNyqIvM/OnYR+7MvAM4IiKO73G1WhIRR9AMxhsz82sTFOnLYzZVu/r5mI3JzOeBu4FlB6x6+ZhFxDzgWODZrlbuEM3l0J9yyIcD+k3fQbNfst9tBd5T7gg5G9iXmU/3ulIzFRG/P9ZnGhFn0Xztzvo/slLnjcDOzPzsJMX67pi10q4+PmYnRMTCMn0Uzd//+MEBxbYCK8v0xcBdWa7qznazbpTNdslJhnyIiI8B92XmVuCDEfEOYJTmRcRVPatwiyLiKzTvijg+InYD62heaCIzvwDcQfNukBHgF8B7e1PT6WmhXRcD74+IUeAFYEWf/JGdA7wb2FH6iAE+As2fc+vjY9ZKu/r1mJ0IbIrmjz4dBmzJzNsOyI6NwJcjYoRmdqzoXXWnx2EYJKkic7l7R5J0AENfkipi6EtSRQx9SaqIoS9JFTH0Jakihr4kVeT/AdHBg3mBM54VAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1901,7 +1898,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -2153,7 +2150,7 @@ "[33045 rows x 12 columns]" ] }, - "execution_count": 14, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -2183,7 +2180,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -2204,7 +2201,7 @@ "dtype: int64" ] }, - "execution_count": 31, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -2215,7 +2212,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -2257,75 +2254,75 @@ "
\n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2347,75 +2344,75 @@ " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -2425,49 +2422,49 @@ "" ], "text/plain": [ - " date average_price total_volume 4046 4225 \\\n", - "0 2015-01-04 1.22 40873.28 2819.50 28287.42 \n", - "1 2015-01-04 1.79 1373.95 57.42 153.88 \n", - "2 2015-01-04 1.00 435021.49 364302.39 23821.16 \n", - "3 2015-01-04 1.76 3846.69 1500.15 938.35 \n", - "4 2015-01-04 1.08 788025.06 53987.31 552906.04 \n", - "... ... ... ... ... ... \n", - "33040 2020-11-29 1.47 1583056.27 67544.48 97996.46 \n", - "33041 2020-11-29 0.91 5811114.22 1352877.53 589061.83 \n", - "33042 2020-11-29 1.48 289961.27 13273.75 19341.09 \n", - "33043 2020-11-29 0.67 822818.75 234688.01 80205.15 \n", - "33044 2020-11-29 1.35 24106.58 1236.96 617.80 \n", + " date average_price total_volume 4046 4225 4770 \\\n", + "0 2015-01-04 0.277580 0.000640 0.000124 0.001382 0.000020 \n", + "1 2015-01-04 0.480427 0.000020 0.000003 0.000008 0.000000 \n", + "2 2015-01-04 0.199288 0.006826 0.016018 0.001164 0.000032 \n", + "3 2015-01-04 0.469751 0.000059 0.000066 0.000046 0.000000 \n", + "4 2015-01-04 0.227758 0.012366 0.002374 0.027010 0.015706 \n", + "... ... ... ... ... ... ... \n", + "33040 2020-11-29 0.366548 0.024844 0.002970 0.004787 0.001028 \n", + "33041 2020-11-29 0.167260 0.091202 0.059484 0.028776 0.007753 \n", + "33042 2020-11-29 0.370107 0.004550 0.000584 0.000945 0.000250 \n", + "33043 2020-11-29 0.081851 0.012913 0.010319 0.003918 0.004141 \n", + "33044 2020-11-29 0.323843 0.000377 0.000054 0.000030 0.000615 \n", "\n", - " 4770 total_bags small_bags large_bags xlarge_bags \\\n", - "0 49.90 9716.46 9186.93 529.53 0.00 \n", - "1 0.00 1162.65 1162.65 0.00 0.00 \n", - "2 82.15 46815.79 16707.15 30108.64 0.00 \n", - "3 0.00 1408.19 1071.35 336.84 0.00 \n", - "4 39995.03 141136.68 137146.07 3990.61 0.00 \n", - "... ... ... ... ... ... \n", - "33040 2617.17 1414878.10 906711.52 480191.83 27974.75 \n", - "33041 19741.90 3790665.29 2197611.02 1531530.14 61524.13 \n", - "33042 636.51 256709.92 122606.21 134103.71 0.00 \n", - "33043 10543.63 497381.96 285764.11 210808.02 809.83 \n", - "33044 1564.98 20686.84 17824.52 2862.32 0.00 \n", + " total_bags small_bags large_bags xlarge_bags type \\\n", + "0 0.000307 0.000447 0.000040 0.000000 conventional \n", + "1 0.000037 0.000057 0.000000 0.000000 organic \n", + "2 0.001477 0.000813 0.002259 0.000000 conventional \n", + "3 0.000044 0.000052 0.000025 0.000000 organic \n", + "4 0.004454 0.006674 0.000299 0.000000 conventional \n", + "... ... ... ... ... ... \n", + "33040 0.044649 0.044121 0.036030 0.019937 organic \n", + "33041 0.119620 0.106938 0.114914 0.043846 conventional \n", + "33042 0.008101 0.005966 0.010062 0.000000 organic \n", + "33043 0.015696 0.013906 0.015817 0.000577 conventional \n", + "33044 0.000653 0.000867 0.000215 0.000000 organic \n", "\n", - " type geography \n", - "0 conventional Albany \n", - "1 organic Albany \n", - "2 conventional Atlanta \n", - "3 organic Atlanta \n", - "4 conventional Baltimore/Washington \n", - "... ... ... \n", - "33040 organic Total U.S. \n", - "33041 conventional West \n", - "33042 organic West \n", - "33043 conventional West Tex/New Mexico \n", - "33044 organic West Tex/New Mexico \n", + " geography \n", + "0 Albany \n", + "1 Albany \n", + "2 Atlanta \n", + "3 Atlanta \n", + "4 Baltimore/Washington \n", + "... ... \n", + "33040 Total U.S. \n", + "33041 West \n", + "33042 West \n", + "33043 West Tex/New Mexico \n", + "33044 West Tex/New Mexico \n", "\n", "[33045 rows x 12 columns]" ] }, - "execution_count": 32, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" }
dateaverage_pricetotal_volume404642254770total_bagssmall_bagslarge_bagsxlarge_bagstypegeography
count66096609.0000006.609000e+036.609000e+036.609000e+036.609000e+036.609000e+036.609000e+036.609000e+036.609000e+0366096609
unique306NaNNaNNaNNaNNaNNaNNaNNaNNaN254
top2018-09-23NaNNaNNaNNaNNaNNaNNaNNaNNaNconventionalAlbany
freq34NaNNaNNaNNaNNaNNaNNaNNaNNaN3403152
meanNaN1.3758549.279758e+052.892279e+052.674004e+052.096474e+043.503326e+052.416817e+051.015750e+057.075827e+03NaNNaN
stdNaN0.3770693.625729e+061.199961e+061.052852e+069.519738e+041.441841e+069.691120e+054.693469e+054.258374e+04NaNNaN
minNaN0.4600004.052900e+020.000000e+000.000000e+000.000000e+000.000000e+000.000000e+000.000000e+000.000000e+00NaNNaN
25%NaN1.0900001.551623e+048.010400e+022.816310e+030.000000e+009.371390e+036.681850e+035.007300e+020.000000e+00NaNNaN
50%NaN1.3300001.365043e+051.175421e+042.520685e+042.105400e+025.490816e+043.864939e+046.601310e+030.000000e+00NaNNaN
75%NaN1.6100005.151225e+051.203490e+051.389205e+055.429000e+031.737592e+051.205833e+054.094432e+048.241000e+02NaNNaN
maxNaN2.8800006.217938e+071.930895e+071.438218e+071.773089e+063.112839e+072.055041e+079.682199e+061.099412e+061.123540e+06NaNNaN
top2015-10-042020-06-21NaNNaNNaNNaNNaNNaNorganicHartford/SpringfieldconventionalCalifornia
freq3633NaNNaNNaNNaNNaNNaN33211443407143
meanNaN1.3765149.613317e+052.980880e+052.879807e+052.211606e+043.530859e+052.417289e+051.044526e+056.904363e+031.3751079.995041e+053.114282e+052.874940e+052.216469e+043.783667e+052.597775e+051.102065e+058.382739e+03NaNNaN
stdNaN0.3766963.850422e+061.272440e+061.214364e+061.072192e+051.437152e+069.502994e+054.860348e+054.026778e+040.3799023.939225e+061.305043e+061.130053e+069.608845e+041.576553e+061.051335e+065.156234e+054.971697e+04NaNNaN
minNaN0.4900003.311900e+020.4800003.855500e+020.000000e+000.000000e+000.000000e+0025%NaN1.0900001.485612e+047.720000e+022.754560e+031.544873e+048.225900e+022.903380e+030.000000e+009.241130e+036.371450e+034.215800e+029.358110e+036.834760e+034.706000e+020.000000e+00NaNNaN
50%NaN1.3500001.289999e+051.047867e+042.323719e+041.749000e+025.265180e+043.625042e+046.262890e+031.3300001.409398e+051.233835e+042.530639e+042.074500e+025.576654e+043.897502e+047.182140e+030.000000e+00NaNNaN75%NaN1.6100005.313190e+051.222257e+051.454874e+054.929000e+031.815306e+051.224066e+054.253166e+049.130700e+025.330085e+051.221341e+051.453971e+055.358790e+031.833669e+051.254250e+054.531138e+041.012940e+03NaNNaN
maxNaN3.0500006.371614e+072.162018e+072.044550e+073.0000005.453235e+071.707665e+071.789639e+071.993645e+063.168919e+071.786577e+071.332760e+071.052078e+062.735245e+071.791382e+071.063102e+071.181516e+06NaNNaN
02015-01-041.2240873.282819.5028287.4249.909716.469186.93529.530.000.2775800.0006400.0001240.0013820.0000200.0003070.0004470.0000400.000000conventionalAlbany
12015-01-041.791373.9557.42153.880.001162.651162.650.000.000.4804270.0000200.0000030.0000080.0000000.0000370.0000570.0000000.000000organicAlbany
22015-01-041.00435021.49364302.3923821.1682.1546815.7916707.1530108.640.000.1992880.0068260.0160180.0011640.0000320.0014770.0008130.0022590.000000conventionalAtlanta
32015-01-041.763846.691500.15938.350.001408.191071.35336.840.000.4697510.0000590.0000660.0000460.0000000.0000440.0000520.0000250.000000organicAtlanta
42015-01-041.08788025.0653987.31552906.0439995.03141136.68137146.073990.610.000.2277580.0123660.0023740.0270100.0157060.0044540.0066740.0002990.000000conventionalBaltimore/Washington
330402020-11-291.471583056.2767544.4897996.462617.171414878.10906711.52480191.8327974.750.3665480.0248440.0029700.0047870.0010280.0446490.0441210.0360300.019937organicTotal U.S.
330412020-11-290.915811114.221352877.53589061.8319741.903790665.292197611.021531530.1461524.130.1672600.0912020.0594840.0287760.0077530.1196200.1069380.1149140.043846conventionalWest
330422020-11-291.48289961.2713273.7519341.09636.51256709.92122606.21134103.710.000.3701070.0045500.0005840.0009450.0002500.0081010.0059660.0100620.000000organicWest
330432020-11-290.67822818.75234688.0180205.1510543.63497381.96285764.11210808.02809.830.0818510.0129130.0103190.0039180.0041410.0156960.0139060.0158170.000577conventionalWest Tex/New Mexico
330442020-11-291.3524106.581236.96617.801564.9820686.8417824.522862.320.000.3238430.0003770.0000540.0000300.0006150.0006530.0008670.0002150.000000organicWest Tex/New Mexico