changed artifacts in jenkinsfile and splitted main file to avocado-preprocessing and avocado-training
Some checks failed
s434742-training/pipeline/head There was a failure building this commit

This commit is contained in:
patrycjalazna 2021-05-07 18:26:53 +02:00
parent b5daa4256d
commit 5a80502164
3 changed files with 66 additions and 44 deletions

12
Jenkinsfile vendored
View File

@ -41,10 +41,10 @@ pipeline {
script { script {
def img = docker.build('patlaz/ium:1.0') def img = docker.build('patlaz/ium:1.0')
img.inside { img.inside {
sh 'chmod +x avocado-preprocessing.sh' sh 'chmod +x avocado-preprocessing.py'
sh 'chmod +x ./avocado-preprocessing.sh' // sh 'chmod +x ./avocado-preprocessing.sh'
sh 'echo ${CUTOFF}' sh 'echo ${CUTOFF}'
sh './avocado-preprocessing.sh ${CUTOFF}' sh 'python3 avocado-preprocessing.py ${CUTOFF}'
} }
} }
} }
@ -53,9 +53,9 @@ pipeline {
stage('archiveArtifacts') { stage('archiveArtifacts') {
steps { steps {
archiveArtifacts 'test.csv' archiveArtifacts 'avocado_test.csv'
archiveArtifacts 'dev.csv' archiveArtifacts 'avocado_validate.csv'
archiveArtifacts 'train.csv' archiveArtifacts 'avocado_train.csv'
} }
} }
} }

View File

@ -5,11 +5,7 @@ import numpy as np
from sklearn import preprocessing from sklearn import preprocessing
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping
from keras.models import Sequential
device = 'cpu' device = 'cpu'
@ -44,6 +40,10 @@ for col in avocado.columns:
avocado_normalized['type'] = avocado['type'] avocado_normalized['type'] = avocado['type']
avocado_normalized['geography'] = avocado['geography'] avocado_normalized['geography'] = avocado['geography']
# parametr CUTOFF
cutoff_param = int(sys.argv[1])
avocado_normalized = avocado_normalized.head(cutoff_param)
# podział na train/dev/test # podział na train/dev/test
avocado_train, avocado_validate, avocado_test = np.split(avocado_normalized.sample(frac=1), [int(.6*len(avocado_normalized)), int(.8*len(avocado_normalized))]) avocado_train, avocado_validate, avocado_test = np.split(avocado_normalized.sample(frac=1), [int(.6*len(avocado_normalized)), int(.8*len(avocado_normalized))])
@ -72,39 +72,12 @@ avocado_train['average_price'].hist()
avocado_validate['average_price'].hist() avocado_validate['average_price'].hist()
avocado_test['average_price'].hist() avocado_test['average_price'].hist()
# zapis do plików
avocado_train.to_csv('avocado_train.csv')
avocado_validate.to_csv('avocado_validate.csv')
avocado_test.to_csv('avocado_test.csv')
# print(avocado_train[:10]) # print(avocado_train[:10])
# print(avocado_test[:10]) # print(avocado_test[:10])
print(avocado_normalized) #print(avocado_normalized)
# podzial na X i y
X_train = avocado_train[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
y_train = avocado_train[['type']]
X_test = avocado_test[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
y_test = avocado_test[['type']]
print(X_train.shape[1])
# keras model
model = Sequential()
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
# kompilacja
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# model fit
epochs = int(sys.argv[1])
batch_size = int(sys.argv[2])
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
model.save('avocado-model.h5')
# predict
predictions = model.predict(X_test)
pd.DataFrame(predictions).to_csv('prediction_results.csv')
# ewaluacja
error = mean_squared_error(y_test, predictions)
print('Error: ', error)

49
avocado-training.py Normal file
View File

@ -0,0 +1,49 @@
import sys
import kaggle
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping
from keras.models import Sequential
avocado_train = pd.read_csv('avocado_train.csv')
avocado_test = pd.read_csv('avocado_test.csv')
avocado_validate = pd.read_csv('avocado_validate.csv')
# podzial na X i y
X_train = avocado_train[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
y_train = avocado_train[['type']]
X_test = avocado_test[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
y_test = avocado_test[['type']]
print(X_train.shape[1])
# keras model
model = Sequential()
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
# kompilacja
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# model fit
epochs = int(sys.argv[1])
batch_size = int(sys.argv[2])
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
model.save('avocado-model.h5')
# predict
predictions = model.predict(X_test)
pd.DataFrame(predictions).to_csv('prediction_results.csv')
# ewaluacja
error = mean_squared_error(y_test, predictions)
print('Error: ', error)