changed artifacts in jenkinsfile and splitted main file to avocado-preprocessing and avocado-training
Some checks failed
s434742-training/pipeline/head There was a failure building this commit
Some checks failed
s434742-training/pipeline/head There was a failure building this commit
This commit is contained in:
parent
b5daa4256d
commit
5a80502164
12
Jenkinsfile
vendored
12
Jenkinsfile
vendored
@ -41,10 +41,10 @@ pipeline {
|
|||||||
script {
|
script {
|
||||||
def img = docker.build('patlaz/ium:1.0')
|
def img = docker.build('patlaz/ium:1.0')
|
||||||
img.inside {
|
img.inside {
|
||||||
sh 'chmod +x avocado-preprocessing.sh'
|
sh 'chmod +x avocado-preprocessing.py'
|
||||||
sh 'chmod +x ./avocado-preprocessing.sh'
|
// sh 'chmod +x ./avocado-preprocessing.sh'
|
||||||
sh 'echo ${CUTOFF}'
|
sh 'echo ${CUTOFF}'
|
||||||
sh './avocado-preprocessing.sh ${CUTOFF}'
|
sh 'python3 avocado-preprocessing.py ${CUTOFF}'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -53,9 +53,9 @@ pipeline {
|
|||||||
|
|
||||||
stage('archiveArtifacts') {
|
stage('archiveArtifacts') {
|
||||||
steps {
|
steps {
|
||||||
archiveArtifacts 'test.csv'
|
archiveArtifacts 'avocado_test.csv'
|
||||||
archiveArtifacts 'dev.csv'
|
archiveArtifacts 'avocado_validate.csv'
|
||||||
archiveArtifacts 'train.csv'
|
archiveArtifacts 'avocado_train.csv'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -5,11 +5,7 @@ import numpy as np
|
|||||||
from sklearn import preprocessing
|
from sklearn import preprocessing
|
||||||
from sklearn.linear_model import LinearRegression
|
from sklearn.linear_model import LinearRegression
|
||||||
from sklearn.metrics import mean_squared_error
|
from sklearn.metrics import mean_squared_error
|
||||||
import tensorflow as tf
|
|
||||||
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
|
|
||||||
from tensorflow.keras.models import Model
|
|
||||||
from tensorflow.keras.callbacks import EarlyStopping
|
|
||||||
from keras.models import Sequential
|
|
||||||
|
|
||||||
device = 'cpu'
|
device = 'cpu'
|
||||||
|
|
||||||
@ -44,6 +40,10 @@ for col in avocado.columns:
|
|||||||
avocado_normalized['type'] = avocado['type']
|
avocado_normalized['type'] = avocado['type']
|
||||||
avocado_normalized['geography'] = avocado['geography']
|
avocado_normalized['geography'] = avocado['geography']
|
||||||
|
|
||||||
|
# parametr CUTOFF
|
||||||
|
cutoff_param = int(sys.argv[1])
|
||||||
|
avocado_normalized = avocado_normalized.head(cutoff_param)
|
||||||
|
|
||||||
|
|
||||||
# podział na train/dev/test
|
# podział na train/dev/test
|
||||||
avocado_train, avocado_validate, avocado_test = np.split(avocado_normalized.sample(frac=1), [int(.6*len(avocado_normalized)), int(.8*len(avocado_normalized))])
|
avocado_train, avocado_validate, avocado_test = np.split(avocado_normalized.sample(frac=1), [int(.6*len(avocado_normalized)), int(.8*len(avocado_normalized))])
|
||||||
@ -72,39 +72,12 @@ avocado_train['average_price'].hist()
|
|||||||
avocado_validate['average_price'].hist()
|
avocado_validate['average_price'].hist()
|
||||||
avocado_test['average_price'].hist()
|
avocado_test['average_price'].hist()
|
||||||
|
|
||||||
|
# zapis do plików
|
||||||
|
avocado_train.to_csv('avocado_train.csv')
|
||||||
|
avocado_validate.to_csv('avocado_validate.csv')
|
||||||
|
avocado_test.to_csv('avocado_test.csv')
|
||||||
|
|
||||||
|
|
||||||
# print(avocado_train[:10])
|
# print(avocado_train[:10])
|
||||||
# print(avocado_test[:10])
|
# print(avocado_test[:10])
|
||||||
print(avocado_normalized)
|
#print(avocado_normalized)
|
||||||
|
|
||||||
# podzial na X i y
|
|
||||||
X_train = avocado_train[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
|
|
||||||
y_train = avocado_train[['type']]
|
|
||||||
X_test = avocado_test[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
|
|
||||||
y_test = avocado_test[['type']]
|
|
||||||
|
|
||||||
print(X_train.shape[1])
|
|
||||||
# keras model
|
|
||||||
model = Sequential()
|
|
||||||
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
|
|
||||||
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
|
|
||||||
|
|
||||||
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
|
|
||||||
|
|
||||||
# kompilacja
|
|
||||||
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
|
||||||
|
|
||||||
# model fit
|
|
||||||
epochs = int(sys.argv[1])
|
|
||||||
batch_size = int(sys.argv[2])
|
|
||||||
|
|
||||||
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
|
|
||||||
model.save('avocado-model.h5')
|
|
||||||
|
|
||||||
# predict
|
|
||||||
predictions = model.predict(X_test)
|
|
||||||
pd.DataFrame(predictions).to_csv('prediction_results.csv')
|
|
||||||
|
|
||||||
# ewaluacja
|
|
||||||
error = mean_squared_error(y_test, predictions)
|
|
||||||
print('Error: ', error)
|
|
||||||
|
49
avocado-training.py
Normal file
49
avocado-training.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
import sys
|
||||||
|
import kaggle
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
from sklearn import preprocessing
|
||||||
|
from sklearn.linear_model import LinearRegression
|
||||||
|
from sklearn.metrics import mean_squared_error
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
|
||||||
|
from tensorflow.keras.models import Model
|
||||||
|
from tensorflow.keras.callbacks import EarlyStopping
|
||||||
|
from keras.models import Sequential
|
||||||
|
|
||||||
|
avocado_train = pd.read_csv('avocado_train.csv')
|
||||||
|
avocado_test = pd.read_csv('avocado_test.csv')
|
||||||
|
avocado_validate = pd.read_csv('avocado_validate.csv')
|
||||||
|
|
||||||
|
|
||||||
|
# podzial na X i y
|
||||||
|
X_train = avocado_train[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
|
||||||
|
y_train = avocado_train[['type']]
|
||||||
|
X_test = avocado_test[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
|
||||||
|
y_test = avocado_test[['type']]
|
||||||
|
|
||||||
|
print(X_train.shape[1])
|
||||||
|
# keras model
|
||||||
|
model = Sequential()
|
||||||
|
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
|
||||||
|
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
|
||||||
|
|
||||||
|
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
|
||||||
|
|
||||||
|
# kompilacja
|
||||||
|
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||||
|
|
||||||
|
# model fit
|
||||||
|
epochs = int(sys.argv[1])
|
||||||
|
batch_size = int(sys.argv[2])
|
||||||
|
|
||||||
|
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
|
||||||
|
model.save('avocado-model.h5')
|
||||||
|
|
||||||
|
# predict
|
||||||
|
predictions = model.predict(X_test)
|
||||||
|
pd.DataFrame(predictions).to_csv('prediction_results.csv')
|
||||||
|
|
||||||
|
# ewaluacja
|
||||||
|
error = mean_squared_error(y_test, predictions)
|
||||||
|
print('Error: ', error)
|
Loading…
Reference in New Issue
Block a user