mlflow task added
This commit is contained in:
parent
9b2764a4c0
commit
60ec48f83c
11
MLproject
Normal file
11
MLproject
Normal file
@ -0,0 +1,11 @@
|
||||
name: 434742-mlflow
|
||||
|
||||
docker_env:
|
||||
image: patlaz/ium:1.0
|
||||
|
||||
entry_points:
|
||||
main:
|
||||
parameters:
|
||||
epochs: {type: int, default: 10}
|
||||
batch_size: {type: int, default: 16}
|
||||
command: "python3 avocado-mlflow.py {epochs} {batch_size}"
|
71
avocado-mlflow.py
Normal file
71
avocado-mlflow.py
Normal file
@ -0,0 +1,71 @@
|
||||
import sys
|
||||
from keras.backend import batch_dot, mean
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from six import int2byte
|
||||
from sklearn import preprocessing
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.metrics import mean_squared_error
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
|
||||
from tensorflow.keras.models import Model
|
||||
from tensorflow.keras.callbacks import EarlyStopping
|
||||
from keras.models import Sequential
|
||||
import mlflow
|
||||
|
||||
|
||||
|
||||
def my_main(epochs, batch_size):
|
||||
|
||||
# odczytanie danych z plików
|
||||
avocado_train = pd.read_csv('avocado_train.csv')
|
||||
avocado_test = pd.read_csv('avocado_test.csv')
|
||||
avocado_validate = pd.read_csv('avocado_validate.csv')
|
||||
|
||||
|
||||
# podzial na X i y
|
||||
X_train = avocado_train[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
|
||||
y_train = avocado_train[['type']]
|
||||
X_test = avocado_test[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
|
||||
y_test = avocado_test[['type']]
|
||||
|
||||
print(X_train.shape[1])
|
||||
# keras model
|
||||
model = Sequential()
|
||||
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
|
||||
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
|
||||
|
||||
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
|
||||
|
||||
# kompilacja
|
||||
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
|
||||
# trenowanie modelu
|
||||
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
|
||||
|
||||
# predykcja
|
||||
prediction = model.predict(X_test)
|
||||
|
||||
# ewaluacja
|
||||
rmse = mean_squared_error(y_test, prediction)
|
||||
|
||||
# zapisanie modelu
|
||||
model.save('avocado_model.h5')
|
||||
|
||||
return rmse, model
|
||||
|
||||
|
||||
|
||||
epochs = int(sys.argv[1]) if len(sys.argv) > 1 else 15
|
||||
batch_size = int(sys.argv[2]) if len(sys.argv) > 2 else 16
|
||||
|
||||
|
||||
with mlflow.start_run():
|
||||
|
||||
rmse, model = my_main(epochs, batch_size)
|
||||
|
||||
mlflow.log_param("epochs", epochs)
|
||||
mlflow.log_param("batch_size", batch_size)
|
||||
mlflow.log_metric("rmse", rmse)
|
||||
mlflow.keras.log_model(model, 'avocado_model.h5')
|
@ -6,4 +6,5 @@ numpy==1.19.5
|
||||
kaggle==1.5.12
|
||||
keras==2.4.3
|
||||
scikit_learn==0.24.2
|
||||
pymongo
|
||||
pymongo
|
||||
mlflow
|
Loading…
Reference in New Issue
Block a user