python script fotr dockerfile added
This commit is contained in:
parent
f35048a86a
commit
6a40cad4c8
47
avocado-preprocessing.py
Normal file
47
avocado-preprocessing.py
Normal file
@ -0,0 +1,47 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn import preprocessing
|
||||
|
||||
|
||||
avocado_with_year = pd.read_csv('avocado-updated-2020.csv')
|
||||
avocado_with_year
|
||||
|
||||
new = ['date', 'average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags', 'type', 'geography']
|
||||
avocado = avocado_with_year[new]
|
||||
avocado.to_csv("avocado.csv", index=False)
|
||||
avocado = pd.read_csv('avocado.csv')
|
||||
|
||||
avocado_train, avocado_validate, avocado_test = np.split(avocado.sample(frac=1), [int(.6*len(avocado)), int(.8*len(avocado))])
|
||||
|
||||
print("Avocado: ".ljust(20), np.size(avocado))
|
||||
print("Avocado (train) : ".ljust(20), np.size(avocado_train))
|
||||
print("Avocado (validate): ".ljust(20), np.size(avocado_validate))
|
||||
print("Avocado (test) ".ljust(20), np.size(avocado_test))
|
||||
|
||||
avocado.describe(include = 'all')
|
||||
avocado_train.describe(include= 'all')
|
||||
avocado_validate.describe(include = 'all')
|
||||
avocado_test.describe(include = 'all')
|
||||
|
||||
avocado.geography.value_counts()
|
||||
avocado_test.geography.value_counts()
|
||||
avocado_train.geography.value_counts()
|
||||
pd.value_counts(avocado['type']).plot.bar()
|
||||
pd.value_counts(avocado_train['type']).plot.bar()
|
||||
pd.value_counts(avocado_test['type']).plot.bar()
|
||||
avocado['average_price'].hist()
|
||||
avocado_train['average_price'].hist()
|
||||
avocado_validate['average_price'].hist()
|
||||
avocado_test['average_price'].hist()
|
||||
|
||||
num_values = avocado.select_dtypes(include='float64').values
|
||||
scaler = preprocessing.MinMaxScaler()
|
||||
x_scaled = scaler.fit_transform(num_values)
|
||||
num_columns = avocado.select_dtypes(include='float64').columns
|
||||
avocado_normalized = pd.DataFrame(x_scaled, columns=num_columns)
|
||||
for col in avocado.columns:
|
||||
if col in num_columns:
|
||||
avocado[col] = avocado_normalized[col]
|
||||
|
||||
avocado.isnull().sum()
|
||||
avocado.dropna()
|
Loading…
Reference in New Issue
Block a user