mongoobserver added
This commit is contained in:
parent
889a66c5f0
commit
f93e101d76
11
Dockerfile
11
Dockerfile
@ -3,11 +3,6 @@ FROM ubuntu:focal
|
||||
RUN apt update
|
||||
|
||||
RUN apt install -y python3 python3-pip
|
||||
# RUN pip3 install kaggle
|
||||
# RUN pip3 install pandas
|
||||
# RUN pip3 install tensorflow
|
||||
# RUN pip3 install scikit-learn
|
||||
# RUN pip3 install pandas
|
||||
# RUN apt install -y unzip
|
||||
|
||||
RUN mkdir /.kaggle
|
||||
@ -19,13 +14,15 @@ COPY ./requirements.txt ./
|
||||
COPY ./avocado-preprocessing.py ./
|
||||
COPY ./avocado-training.py ./
|
||||
COPY ./avocado-evaluation.py ./
|
||||
COPY ./sacred-training.py ./
|
||||
COPY ./sacred-fileobserver.py ./
|
||||
COPY ./sacred-mongoobserver.py ./
|
||||
|
||||
RUN chmod +x ./requirements.txt
|
||||
RUN chmod +x ./avocado-preprocessing.py
|
||||
RUN chmod +x ./avocado-training.py
|
||||
RUN chmod +x ./avocado-evaluation.py
|
||||
RUN chmod +x ./sacred-training.py
|
||||
RUN chmod +x ./sacred-fileobserver.py
|
||||
RUN chmod +x ./sacred-mongoobserver.py
|
||||
|
||||
RUN pip3 install -r ./requirements.txt
|
||||
# CMD python3 avocado-preprocessing.py
|
||||
|
@ -46,7 +46,8 @@ pipeline {
|
||||
sh 'chmod +x avocado-evaluation.py'
|
||||
sh "echo ${env.BUILD_ID}"
|
||||
sh "python3 avocado-evaluation.py ${env.BUILD_ID}"
|
||||
sh 'python3 sacred-training.py'
|
||||
sh 'python3 sacred-fileobserver.py'
|
||||
sh 'python3 sacred-mongoobserver.py'
|
||||
|
||||
}
|
||||
}
|
||||
@ -56,13 +57,14 @@ pipeline {
|
||||
steps{
|
||||
archiveArtifacts 'eval_results.txt'
|
||||
archiveArtifacts 'eval_plot.png'
|
||||
archiveArtifacts '/my_runs'
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
stage('sendMail') {
|
||||
steps{
|
||||
emailext body: currentBuild.result ?: 'SUCCESS',
|
||||
emailext body: "${currentBuild.currentResult}"",
|
||||
subject: 's434742 evaluation',
|
||||
to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||
}
|
||||
|
@ -6,3 +6,4 @@ numpy==1.19.5
|
||||
kaggle==1.5.12
|
||||
keras==2.4.3
|
||||
scikit_learn==0.24.2
|
||||
pymongo
|
@ -63,8 +63,8 @@ def prepare_model(epochs, batch_size):
|
||||
|
||||
|
||||
|
||||
@ex.main
|
||||
def my_main():
|
||||
@ex.automain
|
||||
def my_main(epochs, batch_size):
|
||||
print(prepare_model())
|
||||
|
||||
ex.run()
|
71
sacred-mongoobserver.py
Normal file
71
sacred-mongoobserver.py
Normal file
@ -0,0 +1,71 @@
|
||||
import sys
|
||||
from keras.backend import mean
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn import preprocessing
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.metrics import mean_squared_error
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
|
||||
from tensorflow.keras.models import Model
|
||||
from tensorflow.keras.callbacks import EarlyStopping
|
||||
from keras.models import Sequential
|
||||
from sacred import Experiment
|
||||
from sacred.observers import MongoObserver
|
||||
|
||||
ex = Experiment("file_observer", interactive=False, save_git_info=False)
|
||||
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred'))
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs = 10
|
||||
batch_size = 16
|
||||
|
||||
@ex.capture
|
||||
def prepare_model(epochs, batch_size):
|
||||
# odczytanie danych z plików
|
||||
avocado_train = pd.read_csv('avocado_train.csv')
|
||||
avocado_test = pd.read_csv('avocado_test.csv')
|
||||
avocado_validate = pd.read_csv('avocado_validate.csv')
|
||||
|
||||
|
||||
# podzial na X i y
|
||||
X_train = avocado_train[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
|
||||
y_train = avocado_train[['type']]
|
||||
X_test = avocado_test[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
|
||||
y_test = avocado_test[['type']]
|
||||
|
||||
print(X_train.shape[1])
|
||||
# keras model
|
||||
model = Sequential()
|
||||
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
|
||||
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
|
||||
|
||||
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
|
||||
|
||||
# kompilacja
|
||||
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
|
||||
# trenowanie modelu
|
||||
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
|
||||
|
||||
# predykcja
|
||||
prediction = model.predict(X_test)
|
||||
|
||||
# ewaluacja
|
||||
rmse = mean_squared_error(y_test, prediction)
|
||||
|
||||
# zapisanie modelu
|
||||
model.save('avocado_model.h5')
|
||||
|
||||
return rmse
|
||||
|
||||
|
||||
|
||||
@ex.automain
|
||||
def my_main(epochs, batch_size):
|
||||
print(prepare_model())
|
||||
|
||||
ex.run()
|
||||
ex.add_artifact('avocado_model.h5')
|
Loading…
Reference in New Issue
Block a user