23 lines
952 B
Python
23 lines
952 B
Python
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
data = pd.read_csv('owid-covid-data.csv')
|
||
|
df = data[['iso_code', 'date', 'total_cases']]
|
||
|
df['date']=pd.to_datetime(df['date'], format='%Y-%m-%d')
|
||
|
df.info()
|
||
|
iso = df.iso_code.unique()
|
||
|
df2 = pd.DataFrame(columns=['iso_code', 'date', 'total_cases'])
|
||
|
df3 = pd.DataFrame(columns=['iso_code', 'date', 'total_cases'])
|
||
|
for country in iso:
|
||
|
country_v = df.loc[df['iso_code'] == country]
|
||
|
months = country_v.set_index('date').groupby(pd.Grouper(freq='M')).max()
|
||
|
i=0
|
||
|
for index, month in months.iterrows():
|
||
|
#df2.append(month)
|
||
|
if i==months.shape[0]-1:
|
||
|
df3 = df3.append({'iso_code': month['iso_code'], 'date': month.name, 'total_cases': month['total_cases']}, ignore_index=True)
|
||
|
|
||
|
df2 = df2.append({'iso_code': month['iso_code'], 'date': month.name, 'total_cases': month['total_cases']}, ignore_index=True)
|
||
|
i += 1
|
||
|
df2.to_csv('month-covid.csv', sep=',')
|
||
|
df3.to_csv('max-covid.csv', sep=',')
|
||
|
|