# Projekt 1: Przygotowanie wizualnej analizy danych z wykorzystaniem podstawowej biblioteki graficznej R i/lub biblioteki ggplot2 # zaladowanie bibliotek library(Hmisc) library(dplyr) library(ggplot2) library(RColorBrewer) # zaladowanie danych german_credit_risk <- read.csv("german_credit_data.csv", header = TRUE) # sprawdzenie danych head(german_credit_risk) tail(german_credit_risk) str(german_credit_risk) summary(german_credit_risk) describe(german_credit_risk) # zmiana nazwy pierwszej kolumny colnames(german_credit_risk)[1] <- "index" min(german_credit_risk$Age) na.omit(german_credit_risk) # violin plot ggplot(german_credit_risk, aes(x=Purpose, y=Age, fill=Sex)) + geom_violin(trim=TRUE, position=position_dodge(1)) + stat_summary(fun = mean, geom="point", shape=25, size=2) + #position=position_dodge(.9) labs(title="Credit purpose by age", x="Purpose", y = "Age") + scale_fill_brewer(palette="Accent") + theme_minimal() + theme(legend.position="bottom")