import pandas import os from sacred import Experiment from sacred.observers import MongoObserver from sacred.observers import FileStorageObserver from keras.applications.densenet import layers import tensorflow import random exint = Experiment('z-s434743-training') exint.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred')) exint.observers.append(FileStorageObserver('z-s434743-training/master')) @exint.config def my_config(): EPOCHS = int(os.environ['EPOCHS']) @exint.main def my_main(EPOCHS, _run): _run.info["epochs"] = EPOCHS, normalize = layers.Normalization() train_data_x = pandas.read_csv('./X_train.csv') _run.info["data"] = train_data_x movies_all = train_data_x.copy() movies_predict = train_data_x.pop('audienceScore') normalize.adapt(movies_all) norm_movies_model = tensorflow.keras.Sequential([ normalize, layers.Dense(64), layers.Dense(1) ]) norm_movies_model.compile( loss=tensorflow.keras.losses.MeanSquaredError(), optimizer=tensorflow.keras.optimizers.Adam()) norm_movies_model.fit(movies_all, movies_predict, epochs=EPOCHS) counter = 0 while counter < 20: counter+=1 value = counter * random.randint(5, 5000) _run.log_scalar("training.accuracy", value * 2) norm_movies_model.save('test') exint.run() exint.add_artifact('test/saved_model.pb') exint.add_source_file('./ium_z434743/train.py')