import pandas import os from sklearn.model_selection import train_test_split CUTOFF = int(os.environ['CUTOFF']) movies = pandas.read_csv('./ium_z434743/rotten_tomatoes_movies.csv', engine='python', encoding='ISO-8859-1', sep=',') movies = movies.dropna() movies = movies.drop(movies.columns[[0, 1, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15]], axis=1) movies = movies.sample(CUTOFF) X = movies.copy() Y = pandas.DataFrame(movies.pop('audienceScore')) X_train, X_temp, Y_train, Y_temp = train_test_split(X, Y, test_size=0.3, random_state=1) X_dev, X_test, Y_dev, Y_test = train_test_split(X_temp, Y_temp, test_size=0.3, random_state=1) X_train.to_csv('X_train.csv', index=False) print(X_train) X_dev.to_csv('X_dev.csv', index=False) X_test.to_csv('X_test.csv', index=False) Y_test.to_csv('Y_test.csv', index=False) Y_train.to_csv('Y_train.csv', index=False) print(Y_train) Y_dev.to_csv('Y_dev.csv', index=False)