name: cnn conda_env: conda_env.yaml # Can have a docker_env instead of a conda_env, e.g. # docker_env: # image: mlflow-docker-example entry_points: main: parameters: data_file: path regularization: {type: float, default: 0.1} batch_size: {type: int, default: 32} learning_rate: {type: float, default: 0.001} epochs: {type: int, default: 2} command: "python train_model.py with 'batch_size={batch_size}' 'learning_rate=${learning_rate}' 'epochs=${epochs}'" validate: parameters: data_file: path regularization: {type: float, default: 0.1} batch_size: {type: int, default: 32} learning_rate: {type: float, default: 0.001} epochs: {type: int, default: 2} command: "python train_model.py with 'batch_size={batch_size}' 'learning_rate=${learning_rate}' 'epochs=${epochs}'"