299 lines
13 KiB
Python
299 lines
13 KiB
Python
import math
|
||
import unicodedata
|
||
from time import sleep
|
||
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.optim as optim
|
||
from torch.utils.data import Dataset, DataLoader
|
||
import matplotlib.pyplot as plt
|
||
import re
|
||
import random
|
||
import os
|
||
from tqdm import tqdm
|
||
|
||
DATA_FILE = 'en_US.txt'
|
||
EPOCHS = 4000
|
||
TEACHER_FORCING_PROBABILITY = 0.4
|
||
LEARNING_RATE = 0.01
|
||
BATCH_SIZE = 1024
|
||
plt.ion()
|
||
if not os.path.isfile(DATA_FILE):
|
||
import requests
|
||
|
||
open(DATA_FILE, 'wb').write(
|
||
requests.get('https://raw.githubusercontent.com/open-dict-data/ipa-dict/master/data/' + DATA_FILE).content)
|
||
|
||
DEVICE = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
||
|
||
OUT_LOOKUP = ['', 'b', 'a', 'ʊ', 't', 'k', 'ə', 'z', 'ɔ', 'ɹ', 's', 'j', 'u', 'm', 'f', 'ɪ', 'o', 'ɡ', 'ɛ', 'n',
|
||
'e', 'd',
|
||
'ɫ', 'w', 'i', 'p', 'ɑ', 'ɝ', 'θ', 'v', 'h', 'æ', 'ŋ', 'ʃ', 'ʒ', 'ð', '^', '$']
|
||
|
||
IN_LOOKUP = ['', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
|
||
'u', 'v', 'w', 'x', 'y', 'z', '$', '^']
|
||
|
||
|
||
def extract_alphabet():
|
||
"""
|
||
This function has been used to extract the alphabet but then it was hard-coded directly into
|
||
code in order to speed up loading time
|
||
"""
|
||
with open(DATA_FILE) as f:
|
||
in_alph = set()
|
||
out_alph = set()
|
||
for line in f:
|
||
text, phonemes = line.strip().split("\t")
|
||
phonemes = phonemes.split(",")[0]
|
||
for letter in phonemes:
|
||
out_alph.add(letter)
|
||
in_alph.add(letter)
|
||
return in_alph, out_alph
|
||
|
||
|
||
IN_ALPHABET = {letter: idx for idx, letter in enumerate(IN_LOOKUP)}
|
||
|
||
OUT_ALPHABET = {letter: idx for idx, letter in enumerate(OUT_LOOKUP)}
|
||
|
||
TOTAL_OUT_LEN = 0
|
||
|
||
DATA: [(torch.tensor, torch.tensor)] = []
|
||
|
||
with open(DATA_FILE) as f:
|
||
for line in f:
|
||
text, phonemes = line.split("\t")
|
||
phonemes = phonemes.strip().split(",")[0]
|
||
phonemes = '^' + re.sub(r'[/\'ˈˌ]', '', phonemes) + '$'
|
||
text = '^' + re.sub(r'[^a-z]', '', text.strip()) + '$'
|
||
text = torch.tensor([IN_ALPHABET[letter] for letter in text], dtype=torch.int)
|
||
phonemes = torch.tensor([OUT_ALPHABET[letter] for letter in phonemes], dtype=torch.int)
|
||
DATA.append((text, phonemes))
|
||
random.shuffle(DATA)
|
||
# DATA = DATA[:2000]
|
||
print("Number of samples ", len(DATA))
|
||
TRAINING_SET_SIZE = int(len(DATA) * 0.5)
|
||
TRAINING_SET_SIZE -= TRAINING_SET_SIZE % BATCH_SIZE
|
||
EVAL = DATA[TRAINING_SET_SIZE:]
|
||
DATA = DATA[:TRAINING_SET_SIZE]
|
||
assert len(DATA) % BATCH_SIZE == 0
|
||
print("Training samples ", len(DATA))
|
||
print("Evaluation samples ", len(EVAL))
|
||
print("Input alphabet ", IN_LOOKUP)
|
||
print("Output alphabet ", OUT_LOOKUP)
|
||
TOTAL_TRAINING_OUT_LEN = 0
|
||
TOTAL_EVALUATION_OUT_LEN = 0
|
||
for text, phonemes in DATA:
|
||
TOTAL_TRAINING_OUT_LEN += len(phonemes)
|
||
for text, phonemes in EVAL:
|
||
TOTAL_EVALUATION_OUT_LEN += len(phonemes)
|
||
TOTAL_EVALUATION_OUT_LEN -= len(EVAL) # do not count the beginning of line ^ character
|
||
TOTAL_TRAINING_OUT_LEN -= len(DATA)
|
||
print("Total output length in training set", TOTAL_TRAINING_OUT_LEN)
|
||
print("Total output length in evaluation set", TOTAL_EVALUATION_OUT_LEN)
|
||
|
||
|
||
def shuffle_but_keep_sorted_by_output_lengths(data: [(torch.tensor, torch.tensor)]):
|
||
random.shuffle(data)
|
||
data.sort(reverse=True, key=lambda x: len(x[1])) # sort with respect to output lengths
|
||
|
||
|
||
def collate(batch: [(torch.tensor, torch.tensor)]):
|
||
batch.sort(reverse=True, key=lambda x: len(x[0])) # sort with respect to input lengths
|
||
in_lengths = [len(entry[0]) for entry in batch]
|
||
max_in_len = max(in_lengths)
|
||
out_lengths = [len(entry[1]) for entry in batch]
|
||
max_out_len = max(out_lengths)
|
||
padded_in = torch.zeros((len(batch), max_in_len), dtype=torch.int)
|
||
padded_out = torch.zeros((len(batch), max_out_len), dtype=torch.long)
|
||
for i in range(0, len(batch)):
|
||
padded_in[i, :len(batch[i][0])] = batch[i][0]
|
||
padded_out[i, :len(batch[i][1])] = batch[i][1]
|
||
return padded_in, in_lengths, padded_out, out_lengths
|
||
|
||
|
||
class EncoderRNN(nn.Module):
|
||
def __init__(self, hidden_size, layers):
|
||
super(EncoderRNN, self).__init__()
|
||
self.hidden_size = hidden_size
|
||
self.hidden_layers = layers
|
||
self.embedding = nn.Embedding(num_embeddings=len(IN_ALPHABET),
|
||
embedding_dim=hidden_size,
|
||
padding_idx=IN_ALPHABET[''])
|
||
self.gru = nn.LSTM(input_size=hidden_size,
|
||
hidden_size=hidden_size,
|
||
num_layers=self.hidden_layers,
|
||
batch_first=True)
|
||
# self.lin = nn.Linear(hidden_size, hidden_size)
|
||
|
||
def forward(self, padded_in, in_lengths):
|
||
batch_size = len(in_lengths)
|
||
# hidden_state, cell_state = hidden
|
||
# assert hidden_state.size() == (self.hidden_layers, batch_size, self.hidden_size)
|
||
# assert cell_state.size() == (self.hidden_layers, batch_size, self.hidden_size)
|
||
embedded = self.embedding(padded_in)
|
||
assert embedded.size() == (batch_size, max(in_lengths), self.hidden_size)
|
||
packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, in_lengths, batch_first=True)
|
||
gru_out, hidden = self.gru(packed)
|
||
unpacked, _ = torch.nn.utils.rnn.pad_packed_sequence(gru_out, batch_first=True)
|
||
assert unpacked.size() == (batch_size, max(in_lengths), self.hidden_size)
|
||
# assert hidden.size() == (self.hidden_layers, batch_size, self.hidden_size)
|
||
# h, cell_state = hidden
|
||
# final_hidden = self.lin(h)
|
||
return unpacked, hidden
|
||
|
||
def init_hidden(self, batch_size, device):
|
||
hidden_state = torch.zeros(self.hidden_layers, batch_size, self.hidden_size, device=device)
|
||
cell_state = torch.zeros(self.hidden_layers, batch_size, self.hidden_size, device=device)
|
||
return hidden_state, cell_state
|
||
|
||
|
||
class DecoderRNN(nn.Module):
|
||
def __init__(self, hidden_size, layers):
|
||
super(DecoderRNN, self).__init__()
|
||
self.hidden_size = hidden_size
|
||
self.hidden_layers = layers
|
||
self.embedding = nn.Embedding(num_embeddings=len(OUT_ALPHABET),
|
||
embedding_dim=hidden_size,
|
||
padding_idx=OUT_ALPHABET[''])
|
||
self.gru = nn.LSTM(input_size=hidden_size,
|
||
hidden_size=hidden_size,
|
||
num_layers=self.hidden_layers,
|
||
batch_first=True)
|
||
self.out = nn.Linear(hidden_size, len(OUT_ALPHABET))
|
||
self.softmax = nn.LogSoftmax(dim=2)
|
||
|
||
def forward(self, padded_out, hidden):
|
||
batch_size = len(padded_out)
|
||
padded_out = padded_out.unsqueeze(1)
|
||
seq_length = 1
|
||
hidden_state, cell_state = hidden
|
||
assert hidden_state.size() == (self.hidden_layers, batch_size, self.hidden_size)
|
||
assert cell_state.size() == (self.hidden_layers, batch_size, self.hidden_size)
|
||
embedded = self.embedding(padded_out)
|
||
assert embedded.size() == (batch_size, seq_length, self.hidden_size)
|
||
gru_out, hidden = self.gru(embedded, hidden)
|
||
# assert hidden.size() == (self.hidden_layers, batch_size, self.hidden_size)
|
||
assert gru_out.size() == (batch_size, seq_length, self.hidden_size)
|
||
lin = self.out(gru_out)
|
||
assert lin.size() == (batch_size, seq_length, len(OUT_ALPHABET))
|
||
probabilities = self.softmax(lin)
|
||
assert probabilities.size() == (batch_size, seq_length, len(OUT_ALPHABET))
|
||
return probabilities, hidden
|
||
|
||
|
||
def run(encoder, decoder, batch_in, i_lengths, batch_out, o_lengths, teacher_forcing_prob, criterion):
|
||
batch_in = batch_in.to(DEVICE)
|
||
batch_out = batch_out.to(DEVICE)
|
||
out_seq_len = batch_out.size()[1]
|
||
in_seq_len = batch_in.size()[1]
|
||
assert batch_in.size() == (BATCH_SIZE, in_seq_len)
|
||
assert batch_out.size() == (BATCH_SIZE, out_seq_len)
|
||
loss = 0
|
||
total_correct_predictions = 0
|
||
encoder_output, hidden = encoder(batch_in, i_lengths)
|
||
output = batch_out[:, 0]
|
||
for i in range(out_seq_len - 1):
|
||
if random.random() < teacher_forcing_prob:
|
||
out = batch_out[:, i]
|
||
else:
|
||
out = output
|
||
output, hidden = decoder(out, hidden)
|
||
output = output.squeeze(1)
|
||
expected_output = batch_out[:, i + 1]
|
||
if criterion is not None:
|
||
loss += criterion(output, expected_output)
|
||
argmax_output = torch.argmax(output, 1)
|
||
with torch.no_grad():
|
||
total_correct_predictions += (argmax_output == expected_output).sum().item()
|
||
output = argmax_output
|
||
return loss, total_correct_predictions
|
||
|
||
|
||
eval_bar = tqdm(total=len(EVAL), position=2)
|
||
|
||
|
||
def eval_model(encoder, decoder):
|
||
eval_bar.reset()
|
||
eval_bar.set_description("Evaluation")
|
||
with torch.no_grad():
|
||
total_correct_predictions = 0
|
||
for batch_in, i_lengths, batch_out, o_lengths in DataLoader(dataset=EVAL, drop_last=True,
|
||
batch_size=BATCH_SIZE,
|
||
collate_fn=collate):
|
||
loss, correct_predictions = run(encoder=encoder,
|
||
decoder=decoder,
|
||
criterion=None,
|
||
i_lengths=i_lengths,
|
||
o_lengths=o_lengths,
|
||
batch_in=batch_in,
|
||
batch_out=batch_out,
|
||
teacher_forcing_prob=0)
|
||
total_correct_predictions += correct_predictions
|
||
eval_bar.update(BATCH_SIZE)
|
||
return total_correct_predictions
|
||
|
||
|
||
outer_bar = tqdm(total=EPOCHS, position=0)
|
||
inner_bar = tqdm(total=len(DATA), position=1)
|
||
|
||
|
||
def train_model(encoder, decoder):
|
||
encoder_optimizer = optim.Adam(filter(lambda x: x.requires_grad, encoder.parameters()),
|
||
lr=LEARNING_RATE)
|
||
decoder_optimizer = optim.Adam(filter(lambda x: x.requires_grad, decoder.parameters()),
|
||
lr=LEARNING_RATE)
|
||
criterion = nn.NLLLoss(ignore_index=OUT_ALPHABET[''])
|
||
train_snapshots_percentage = [0]
|
||
train_snapshots = [0]
|
||
eval_snapshots = [eval_model(encoder, decoder)]
|
||
eval_snapshots_percentage = [eval_snapshots[0] / TOTAL_EVALUATION_OUT_LEN]
|
||
outer_bar.reset()
|
||
outer_bar.set_description("Epochs")
|
||
for epoch in range(EPOCHS):
|
||
shuffle_but_keep_sorted_by_output_lengths(DATA)
|
||
total_loss = 0
|
||
total_correct_predictions = 0
|
||
inner_bar.reset()
|
||
for batch_in, i_lengths, batch_out, o_lengths in DataLoader(dataset=DATA, drop_last=True,
|
||
batch_size=BATCH_SIZE,
|
||
collate_fn=collate):
|
||
encoder_optimizer.zero_grad()
|
||
decoder_optimizer.zero_grad()
|
||
loss, correct_predictions = run(encoder=encoder,
|
||
decoder=decoder,
|
||
criterion=criterion,
|
||
i_lengths=i_lengths,
|
||
o_lengths=o_lengths,
|
||
batch_in=batch_in,
|
||
batch_out=batch_out,
|
||
teacher_forcing_prob=TEACHER_FORCING_PROBABILITY)
|
||
total_correct_predictions += correct_predictions
|
||
loss.backward()
|
||
encoder_optimizer.step()
|
||
decoder_optimizer.step()
|
||
inner_bar.update(BATCH_SIZE)
|
||
loss_scalar = loss.item()
|
||
total_loss += loss_scalar
|
||
inner_bar.set_description("Avg loss %.2f" % (loss_scalar / batch_out.size()[1]))
|
||
train_snapshots.append(total_correct_predictions)
|
||
train_snapshots_percentage.append(total_correct_predictions / TOTAL_TRAINING_OUT_LEN)
|
||
eval_snapshots.append(eval_model(encoder, decoder))
|
||
eval_snapshots_percentage.append(eval_snapshots[-1] / TOTAL_EVALUATION_OUT_LEN)
|
||
plt.clf()
|
||
plt.plot(train_snapshots_percentage, label="Training %")
|
||
plt.plot(eval_snapshots_percentage, label="Evaluation %")
|
||
plt.legend(loc="upper left")
|
||
plt.pause(interval=0.01)
|
||
# print()
|
||
# print("Total epoch loss:", total_loss)
|
||
# print("Total epoch avg loss:", total_loss / TOTAL_TRAINING_OUT_LEN)
|
||
# print("Training snapshots:", train_snapshots)
|
||
# print("Training snapshots(%):", train_snapshots_percentage)
|
||
# print("Evaluation snapshots:", eval_snapshots)
|
||
# print("Evaluation snapshots(%):", eval_snapshots_percentage)
|
||
outer_bar.set_description("Epochs")
|
||
outer_bar.update(1)
|
||
|
||
|
||
train_model(EncoderRNN(32, 4).to(DEVICE), DecoderRNN(32, 4).to(DEVICE))
|