From e5cfa4bd744dede8fc08ef71c25d62ed6f97eb37 Mon Sep 17 00:00:00 2001 From: Damian Bregier Date: Tue, 1 Jun 2021 12:00:45 +0200 Subject: [PATCH] FIX: Label --- Bayes.ipynb | 35 +++++++---------------------------- 1 file changed, 7 insertions(+), 28 deletions(-) diff --git a/Bayes.ipynb b/Bayes.ipynb index 747fff1..2a54265 100644 --- a/Bayes.ipynb +++ b/Bayes.ipynb @@ -956,14 +956,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 19, "metadata": { "scrolled": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAI5CAYAAAB6qc0fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB7+UlEQVR4nO3dd3gU5d7G8XsTQigJ0ntHA1ISgkqTLk2UjkgLSJGigHIsFBFQQCxIF5SuAaVXj3pUBJRiEEEivUOAEDqkQBI28/6Rd1dWkhBImUz4fq7LS3ZndvY3s5PZufd5nhmbYRiGAAAAAACwMDezCwAAAAAAIKUItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAkjS9OnTVb58+fv6b9WqVSl6z6CgIOeybt++nUprYh0RERGqWbOmypcvr/79+8tut9/zNWFhYfLz81P58uU1bNiwdKgyY2nUqJHKly+v5cuXp/l7nTlzxrl/njp1Ks3f737dvHlTZ86cMbsMWNy1a9d08eJFU2sICAhQ+fLlNXny5GTN/7B/dwAg3AK4hyJFiqhatWr3/K9AgQLO13h4eJhYcdLuDOtBQUFml5OgOXPm6OrVq6pataomT54sd3f3e75m2rRpunXrlurWratx48alQ5XIiNavX69mzZpp+/btZpcCC1u4cKGaNm2qI0eOmF0KANyXLGYXACBj69Chgzp06JDkPEeOHFHnzp0lSb6+vmrWrFl6lJYpXbhwQV9++aVKly6tWbNmKXv27Pd8zbFjx7R69WpVqVJF06ZNU5YsD9+hfeHChYqNjVXBggXNLsVUkydPVlhYmNllwOImTJhgdgkPxNfXV999950kPZTHQQCEWwApdP36db3yyisKDw9X7ty5NXXqVGXNmtXsshKVJ08elSlTRpKSFRzTW8GCBfXXX3/d12vKlSun/fv3p01BFlGyZEmzSwBgsuzZs6tcuXJmlwHARIRbAA/MMAwNHTpUp0+flpubmz755BMVLVrU7LKS1K1bN3Xr1s3sMgAAAJDKCLcAHtjcuXO1ceNGSdKAAQNUr169BOc7deqUFi1apKCgIJ07d043b96Ul5eXypcvr+eff17t27dP1rhSh4MHD2rBggUKCgrSpUuXlDNnTlWuXFkdO3a8q0v0qlWrNHz48GQt96uvvlKNGjUUFBSk7t27y8/PT4sXL1ZgYKDWrFmjU6dOycPDQ5UqVVJAQIAaN26c4HLCwsK0cOFCbd68WWfPnpWbm5tKliypJk2aqHv37sqVK9ddrzl27Jjmzp2r4OBgnT17Vu7u7ipRooTq16+v7t27K1++fHe9xjAMrVu3TmvWrNHhw4d1/fp1FShQQDVr1lS/fv1UunTpZK339OnTNWPGDHXv3l19+vTRpEmT9NtvvykyMlLFihVTixYt1KNHD3l7eyf4+r///ltfffWV/vjjD126dEk5cuRQ+fLl1bp1a7Vt2/auzzYgIEA7duzQggUL5OXlpVmzZmnXrl2Kjo5WmTJl1KNHD7Vp00aStHz5cn3zzTc6fvy43N3d5efnp8GDB6tq1aouy2zUqJHOnj2rcePG6YUXXnCZFhERoS+//FI//fSTTp06JcMwVKJECTVp0kQvvfRSgp+HJO3fv1/z5s3Tzp07dfXqVZUqVUqdOnVKdD8vX758Mra21LZtW40fP14NGzZUWFiYhg0bpp49eyY47zvvvKMVK1aoc+fOGjNmTKLLdHyGDiNHjtTIkSM1cOBADRo0yPn8pUuXNH/+fG3atMm5b5YtW1bPPfecunbtKk9PzwSX279/f3Xr1k0zZszQxo0bdfXqVRUqVEjPPfecXn31VWXNmlVBQUGaPXu2goODFR0drXLlyrl8lg7Dhg3T6tWrNXz4cNWtW1eTJ0/WH3/8oZiYGJUqVUpt27ZVp06d7qrF4Y8//lBgYKB27dqla9euKVeuXKpataoCAgJUq1atu+Z37Bs//vijQkJCNHfuXO3du1dxcXHy8fFR//791aBBA92+fVsLFy7UmjVrdPr0aWXPnl1PPfWUhgwZct+tgRcuXNDixYu1detWnT59WpGRkcqZM6fKli2rpk2bqkuXLsqWLdt9LTMsLEzz5s3T5s2bFRoaqkceeUQNGzbUwIEDNWnSJK1evVoTJkxQu3btXF63Y8cOLV++XLt379alS5d0+/Zt5cmTR1WrVlWXLl1ctpnjs3Fw7JeO5Tr2h2rVqumbb765q0bHsVOSDh06dNdyx4wZo7p16+qzzz7T1q1bdeXKFeXNm1d169bVgAEDVLx48WRti5s3b6pv377asWOHChcu7BzKcef779u3766uyffz3SGlzbEKQNoi3AJ4IDt37tSUKVMkSU8//bQGDhyY4Hw///yzhgwZopiYGOXIkUMlSpSQYRg6c+aMgoKCnP99+umnyXrfxYsXa/z48bLb7cqRI4cee+wxXbt2TVu2bNGWLVv0/PPP6+OPP3YGqnz58qlatWqJLu/48eO6du2aPDw8XC6KJUmxsbF6+eWXtX37duXJk0flypXTiRMn9Pvvv+v333/XmDFjnGONHbZv365BgwYpPDxcHh4eevTRR3X79m0dPnxYBw8e1IoVK/TFF1+4BKHdu3erV69eioqKUq5cuVSmTBlFR0fr8OHDOnDggFavXq2lS5eqSJEiztdERkZq8ODB2rJliySpaNGi8vHx0YkTJ7Rq1Sr98MMPWrRokSpVqpSs7SrFnzx36NBBFy5cUOnSpZU/f34dOXJE06dP13fffaf58+ercOHCLq+ZM2eOJk2apLi4OOcPFlevXtWOHTu0Y8cOrV27VjNnzkwwGP/www9auXKlsmbNqtKlS+vcuXPav3+/hg4dqqioKO3atUvr169Xvnz5VKZMGR05ckRbt27VH3/8oeXLl6tChQr3XKdjx47p5ZdfdvnBIFu2bDp69Kg+++wzrVmzRnPmzLkrvKxbt04jRoxQbGysHnnkET322GM6e/as3n//fVWvXj3B90pqP7t27ZqOHz8uKf6zcnd3V9u2bfX5559r7dq1CYbbW7du6YcffpCkuwLLvzku/LZ3715nSMyXL5/LPvPnn3/qlVdece7vpUuXlmEY2rdvn/bu3au1a9dq7ty5d/0dSPE/ULVu3VpXr17Vo48+Knd3d4WEhOjzzz9XSEiInnrqKb333nvKnj27SpcurTNnzjg/y1u3bqlTp053LfPQoUOaNm2aoqKi9Nhjj+n27ds6cOCADhw4oP/973/64osv7tpvJk6cqDlz5kiSHnnkEfn4+OjChQvasGGDNmzYoD59+uitt95KcBt9+eWXWrx4sXLlyqUSJUro1KlT2r17t/r376/p06crMDBQQUFBKlSokMqUKaPDhw/rp59+0h9//KF169apUKFCSX4GDn/99Zdefvll3bhxQ56enipZsqSyZMmiM2fOaPfu3dq9e7c2bNigr776Ktk/6u3bt099+vTRlStX5OHhIR8fH127dk1Lly7Vhg0bVKJEiQRf9+mnn2r27NmSpLx586ps2bKKiIhwhv0ff/xR77//vl588UVJUunSpVWtWjXt2rVLkuTj4yMvL68Ef1x7EPv379fEiRMVFRWlkiVLqlSpUjp69KhWrFihX375RatWrXLZZxMSHR2tAQMGaMeOHSpWrJi+/PLLRNf/Tvf73XGn9DhWAUglBgDcp8uXLxt169Y1fHx8jHr16hmXL19OcL5r164ZTz31lOHj42OMHj3aiIqKck6LjIw0xo4da/j4+Bg+Pj7G4cOHndN+//135/OxsbHO5zdv3myUL1/eqFSpkvHll18at2/fdk7btm2bUatWLcPHx8eYPHlystbj999/NypVqmT4+PgYK1asSPD9q1ataqxbt8457caNG0aPHj0MHx8fo3r16i71nTlzxqhatarh4+Nj9O/f37h48aJz2unTp40XX3zR8PHxMRo0aGDcuHHDOe2FF14wfHx8jLFjxxrR0dEur2natKnh4+NjvPvuuy61v/vuu4aPj49Ro0YNY+vWrS71vfLKK4aPj49Rv359l22UmGnTpjnX96mnnjK2bdvmnHb06FFnDb169XJ53Q8//OB83ZQpU1xq3759u1G7dm3ntrhTt27dnK8bNGiQc1vcunXL6NWrl+Hj42NUqFDBqFKlirFmzRqX7Vu/fn3Dx8fHGDZsmMsyGzZsaPj4+BjLli1zPhcZGWk0adLE8PHxMQYMGGCcP3/eOe3ChQtG3759DR8fH6Np06bGzZs3XbZ7lSpVDB8fH2PChAnO9bp9+7bxxRdfOGv38fExTp48ec/tGxERYbRp08bw8fExunfv7txnTp06ZZQvX97w8fExDh06dNfr1q9fb/j4+BgtWrS453sktR0MwzDOnz9vVK9e3fDx8TFGjhxpXL9+3Tnt1KlTzn2wS5cuLq+7c9949tlnjRMnTjinTZ061TmtQoUKLtsqKirK6N27t+Hj42M0bNjQZZlDhw51vq5hw4bG/v37ndN27drl3G/+vc9/8803ho+Pj/Hkk08aa9eudT4fFxdn/Pe//3X+7f173R3bxPE35visr1+/brRs2dJZf/Xq1Y1ff/3V+boDBw4Y/v7+ho+PjzF9+vR7bnvDiN9HGjdubPj4+BivvPKKce3aNee0mJgYl/1n48aNyVrmrVu3jGeeecbw8fExevfu7XK83bhxo1GtWjXnMleuXOmc5jiOVahQwVixYoVht9ud00JDQ51/h7Vr13aZZhiGc3l3HlsM45/9oVOnTgnWeuex8053fuYdO3Y0jh8/7py2a9cu53YeN26cy+scNU6aNMkwDMOIjo52HiMaN25snD17NtH3T43vjrQ4VgFIW9wKCMB9MQxDb731lsLCwuTh4aEpU6Yob968Cc67c+dOxcbGqkCBAho5cqTLBZxy5MihYcOGOW8bdPjw4Xu+96RJk2QYht588011797d5Rf2WrVqOa/wuWDBAl29ejXJZR07dkwDBw5UbGys+vTpo/bt2yc43+DBg9WyZUvnY29vb2fL0LVr13TixAnntC+++EJRUVHy8fHR1KlTlT9/fue0EiVK6IsvvlCBAgV07tw5BQYGOqcdPHhQktS+fXuXi3GVKFFCQ4cOVcOGDVWsWDHn8xcuXNCyZcskSR999JFq167tUt8nn3yiXLlyKTQ0VNu2bUtyO/zbRx995NJNsVy5cpo5c6bc3Ny0ZcsWl4tdOe49+eKLL+q1115zqb1mzZrObrK//PKLdu7cedd75c6dWx9++KGzdc7T09PZghkXF6c+ffqodevWzvmLFSvmvHL3vn377rkuy5cv16lTp1SpUiVNnz7dpeWtQIECmjp1qooVK6aTJ0+63Jt57ty5io6OVvXq1TVs2DDnerm7u6tv3773bEW9k91u13/+8x/t379fpUuXdrmadcmSJfXkk09KktauXXvXax3dQ+/n/RIzb948Xbt2TY0aNdLYsWNdumKXLFlSM2fOlJeXl3bu3KnNmzcnuIwJEya4dHV/+eWXnX+DTzzxhMu2yp49u/r27StJOnv2rK5fv37X8tzc3DRz5kw9/vjjzuf8/f310UcfSYr//BxXfo6JidH06dMlSR988IFatWrlfI3NZlOLFi2cf5fTp09P8B6njz76qEaMGOHsDpwrVy517dpVUvz+9vbbb6tu3brO+StUqODsqpqc/U2K/1u+du2asmbNqnHjxumRRx5xTvPw8FDfvn2drYzJOeZJ0sqVKxUSEqKiRYtq+vTpLsfbBg0aaOzYsQm+7rffflPWrFnVpEkTtW/fXm5u/5zyFS5cWK+99pqk+K7qly9fTlYtKeXh4aEZM2Y4L+onxX/mjn3c0WKckJiYGA0cOFBbtmxR6dKltWjRomRf4yGl3x1pfawCkHoItwDuy6xZs5xdYd9++235+/snOu8zzzyj3bt36+eff07wtgzR0dHKnTu3pPgxVEk5c+aMDhw4IEkuJ7Z3ql+/vvLkyaNbt24leZ/Py5cvq2/fvrpx44YaN26sN954I9F5GzZseNdzd3ZhvXHjhvPfmzZtkiR17tw5wStGP/LII84Q/fPPPzufL1WqlCRp9OjR2r59u2JjY53TGjVqpM8//1z9+vVzPrd582YZhqGiRYuqfv36d71Pjhw5tGTJEm3ZssXlZP1eSpUqlej6PvXUU5KkDRs2SJJOnjzpDPY9evRIcHn+/v7O/cPxujvVqFFDOXLkcHnuzhCf0Lo5bvUTERFxz/VxbOMWLVok2NUwW7ZszvDiGDsuyRnuEguV/+6KnpRx48Zp06ZNyp07t7744guXsCPJuT+sX79ecXFxzucvXLig7du3K0uWLC4nzQ/KsS0S+9vJnz+/nn76aUmu28Ihd+7c8vPzc3kue/bszqCV0DjkO2/LlNDnVbNmzQS7a9apU0fFixdXXFycsxbHeNGcOXPqmWeeSXAdWrVqJTc3N4WFhSV49fB69eq5BDwpdfc3SapUqZL++OMP/fHHH8qTJ89d02NiYpz7wL2OeQ6Oz65NmzYJXuH92WefTbDL9Jtvvqng4GB98sknCS73zjG/t27dSlYtKVW5cuUEu72XLVtWkhQeHp7g627fvq3XXntNmzdvVsmSJbVo0aJkdxNPje+OtD5WAUg9jLkFkGxBQUHO1rjmzZs7L9xxL9myZdPBgwd18OBBhYSE6PTp0zp69KiOHDniDHKGYSS5jCNHjjj//eqrryY6X3R0tCQ5xzf+261btzRgwACdOXNGFStW1CeffHLXCe+dEjqBuvOk0G63S4o/gXG0MlWuXDnR5TnGwN7Z4vvWW29pwIAB2rNnj1566SXlyJFDTz31lGrXrq0GDRrcdWGoU6dOSUr6AkYPcjuMKlWqJDqtfPnyCgoK0smTJyX9s33vdeuNypUra/fu3S7r6/Dv8buSnC35khLsEXA/9650tIwtX748wXAtxbdaSf+sz61btxQaGipJeuyxxxJ8TYUKFWSz2e65z86fP19ff/21PDw8NHXq1AQv8NW8eXONHTtWYWFh+v33352t8OvWrZPdblfDhg1degA8iMjISJ09e1aSNHPmTH311VcJzueYJ6G/ncTGQTp+xLnXZ5XQtvL19U205vLly+vMmTPO/c3x9x8bG+tsbU2Iu7u74uLidPz48buWn9b7252yZcumkydPau/evTp9+rRCQkJ09OhRHTp0yHmMuvPHjKQ49uPExm3abDZVrFgxwfsb22w2ubm5aefOnTp69Kjz+Hvo0CHnceR+akmpxAKp45iaUIu7JC1atMgZwK9du3Zf9abGd0d67jsAUoa/PADJcunSJb3xxhuy2+0qU6aMxo8fn6zXbd68WVOmTLmrJaVgwYJq3ry5fv311wS7LP7bnb/oJ9V1LaH5HeLi4vTWW29pz549KlCggGbNmnXXr/H/ducJTEIcJ+2RkZHO57y8vBKd3zEtKipKhmHIZrOpXr16WrFihebMmaNNmzYpMjJSmzdv1ubNmzVhwgQ98cQTev/99/Xoo49Kij+5k3TP2u+XoxU9IY73crRUO1ojklpXScqZM6ck1+3jcK/7DNtstiSn34ujxpMnTzpDUmIc+8ud+2Ji2zdr1qzKnj27oqKiEl3ejz/+6GwxGz16tGrWrJngfNmzZ1eLFi20fPlyrV271hlu16xZI0mJdpe/H3e2HCWnK2xCfzv3+qyS+oEoMf9uxb7Tv/c3R00xMTHJ+vu/s0fFv5eZmAdZh4Ts2bNHEydO1I4dO1yez5Mnj+rXr6/9+/frzJkzyV5ecv7eE/o7NAxDX375pebNm6cLFy44n7fZbCpTpoxat26dYHf4tHSv42libt26JR8fHxmGoSNHjujdd991XijrXlLjuyOtj1UAUg/hFsA9xcXF6Y033tDFixeVPXt2TZs27Z6hRpJ+//139e/fX3FxcapatapatmwpHx8flStXznn1zeR2m3Wc2OXOnVtBQUEPtB4ff/yxfvzxR2XLlk2zZs1K8Nf4B+UIcVLS3dAc4SlHjhwuJ0SPP/64Jk2apNjYWO3Zs0dBQUHatm2bdu3apT///FMvvfSSfvzxR+XIkcN5opVQYEyJpMKaY50cn5tjfe/V5c4RMu7cPukle/bsCg8P1+eff55gd+uE3NmVNLF1MwxDMTExiS4jODhYb731luLi4tSrV6+7bk30b+3bt9fy5cv1448/6r333tPx48d15MgR5cmTRw0aNEhW3Um588R8/fr18vHxSfEyU8P97G+OdahUqZLL+OiM5tixY+revbtu3bqlRx99VO3bt1eFChVUrlw5Z6tlp06d7ivcZs+eXbGxsUn+rSV0LPjss8+c45RbtGihevXq6dFHH1XZsmWVM2dOnTx58oHDbWK9FpLb1fp+VahQQQsXLtTp06fVqVMnbd68WatWrUrWePTU+O4AYB2MuQVwT9OnT9fvv/8uSXrvvfeSfXI8Z84cxcXFqWbNmvr666/VrVs3Va9e3XnCGhMTc88LPzk4LkBy7do1Xbx4MdH5du7cqWPHjt01hmzx4sVasGCBbDabPvrooyS74D4ILy8v5xirvXv3JjqfY5qji6rdbtepU6f0xx9/SIpv2XjyySf16quvavHixVq8eLFsNpsuXrzovDiU47V3drf7t2nTpql3794u96y8l6SW5xiz5mg9doyRu3nzpo4dO5bo6xzr6xhXnJ4c+0xS63Xy5En9/fffunLliqT4VlnHWDrHOv/b8ePHE+0+GRISov79++vWrVtq2LBhoreluZO/v7/KlSunqKgobd26VT/99JOk+PGBD9rSdadcuXI5uzYfPXo00fkOHTqkAwcOJKsnRWpI6nNxXGTNsb85PsuTJ08muu0Nw9Dvv/+ukydPJvnjQ1r68ssvdevWLZUtW1YrVqxQr169VLt2bZfuuAl1H06K43h7531j/+3f02JjYzVv3jxJ8V1xJ0+erLZt26pKlSrOH5rOnz9/X3VIco5dT2z73tlCnJoaNGigPHnyyM/PTwEBAZLiL3CWnG2Z0u8OANZCuAWQpK1bt+rzzz+XFN/icD8Xt3G0TlSoUCHBC/qsWbPGOeY2sRNWh3LlyjkD0qJFixKc588//1TXrl3VokULl6v6btq0ydmN+vXXX1fz5s2TvQ73w9E6+M033yR48nf9+nVnd1PHBXiOHDmipk2bqkePHgmeePn7+ztPRh3jzBwXxjl79myCFz+5deuWVqxYoS1bttxzXOid9u7d6wwVdzp48KCzO5/jAkxlypRxnjR++eWXCS5v165dCg4Odlnf9OT4PFasWJHgCevt27f1yiuvqEOHDs4r9EpS06ZNJUlLly51jqm+0/LlyxN8vxs3bqhv3766fPmyypcvr08//TTZXV3vvNCYY3zwg1wl2dEb4N+fu6MFeNGiRQmOVwwPD1ePHj3Upk2bRD/P1Pbrr78muM9v3LhRoaGhypo1qxo1aiRJeuqpp+Tt7a3IyMhEW27Xr1+vHj166Nlnn32g4JYaHOOWy5Url2BX1q1bt+rcuXOSlOC+lZAmTZpIil8/x7jQO/3222/O93W4evWqs2U8sXtd37kf//v4m9h+5OjZcObMmQSPcY4fZtLS66+/rmLFiunGjRt699137zl/Sr47AFgP4RZAosLCwpzdK6tVq6Z33nnnvl7vaN3773//69K6Fx0drUWLFmncuHHO55Lza7nj1hWzZ8/WnDlzXE6udu7c6ZxetWpV5xjH/fv3a8iQIbLb7XrxxRfVv3//+1qH+/Hyyy8rZ86cOnz4sF577TWX22uEhISoX79+unTpkgoVKuS8wnCFChXk4+PjvGXMnSflMTExmjx5siIiIpQjRw7nbWNKlCjhvD3R22+/rd27dztfc/36db399tsKCwtTsWLF1KJFi2TXbxiGBg8e7NKidvDgQQ0cOFCGYaht27YuF49ybO+lS5dq2rRpLp9HUFCQBg8eLCm+6/mdtytKL127dlWBAgV06tQpDRgwwBkqJOnKlSt6/fXXdezYMXl4eKhXr17Oab1791bu3Lm1b98+DR8+3Nkd1DAMff311wlekCkmJkavvvqqjh8/riJFimjOnDn31RW7TZs2ypIli3744QcdOnRIlSpVSvQCQklxdMH8d9jp27evcuTIoT///FNvvfWWs6XaMW/fvn119epVeXt7J3nBptQUFRWlV155xXkBLyl+vxk+fLizZsetV3LkyOG8tdD48eO1cuVKl5D+888/a/To0ZLirx5csmTJdFmHf3P84LN161aX21/dvn1b3377rYYMGeJ8LrkthB06dFCRIkV05swZ/ec//3GOwZXij3vDhg276zV58+Z1jqFfuHChS2v8lStXNGbMGH377beJ1uLYj+78m5Hib/kkxR9nJk+e7AzFN2/e1Keffqpff/01WeuUEjly5HDe/sjRPfleHuS7A4A1MeYWQKKWL1/uDGiOlp3kqF+/vvr3769XX31V27Zt08WLF9WyZUuVLl1aWbNm1alTpxQVFaW8efOqTJkyOnjwYLJaWp577jmdPHlS06dP18SJE/XFF1+odOnSunLlivNkvkyZMpo5c6bzNUOHDlVUVJTc3d118eJF9e7dW9HR0Qm2mjjqflAlSpTQtGnT9Nprr+mXX35R/fr19eijj8put+vo0aOKi4tT0aJFNWPGDJera06ePFmdOnXSjh071LhxYxUvXlzZs2fXmTNndOPGDbm7u+v99993ec2oUaMUGhqqHTt2qFOnTipVqpRy5MihEydO6NatW8qdO7emTZvmcmXneylcuLCuXr2qli1b6rHHHpNhGDp69KgMw1DNmjXv+nHj2Wef1enTpzV58mR99tln+vLLL1WmTBmXz6N69er65JNPTLngyiOPPKJZs2ZpwIAB2rZtm5555hk9+uijstlsOnHihGJiYpQlSxZNmjTJ5crTBQoU0JQpUzRw4ECtXbtWP/30k8qVK6fz58/r4sWLatSokTZv3uyyDy1evNh5AaG8efNq1KhRunnzpsttne70zTffuDzOly+f6tevn6JWW0mqWLGiDh8+rLlz5+rXX39VkyZN9Morr6hUqVKaMmWKhgwZom+//Vb/+9//9Oijjyo2NtbZ1TdHjhyaPXu2c9hAWitdurQOHDigxo0by8fHR1FRUc4Lfz3//PMut7+S4n88CgkJ0bJlyzRixAh98sknKl68uMLCwpzdYatVq+byo1l669Wrl7799ltdvXpVXbt2VenSpZUzZ06dOXNG169fV44cOeTv76/du3cnu3XZy8tLU6dOVc+ePfXzzz/r119/1WOPPabIyEidPHlSxYoVU/78+XXp0iVnD5ksWbLotdde03vvvacdO3aofv36Kl26tGJiYnTq1Cndvn1bFStWVGhoqK5evarz58+7tPBWrFhRf/zxh95//31988036tKlizp06CAfHx+1bNlS69ev1/z587V27VoVLlxYp06dUkREhF5//XVNmTIlLTati6efflpt27bV6tWrNWHCBD399NNJ3hroQb47AFgT4RZAou7skpbU+Lh/c3QBq1y5stauXavPPvtMu3fv1unTp5U1a1aVLFlSDRo0UPfu3bVp0yaNGDFCmzZt0rBhw+4Zgl599VXVqVNHgYGB2rlzpw4ePCgPDw9VrFhRTZo0UY8ePVxazBwXWrHb7frll1+SVXdK1KlTR//973+1YMECbd68WSdOnJCHh4cef/xxNW/eXJ06dVKuXLlcXvPoo49q9erVmjdvnrZv365z587JMAwVLFhQTZo0Uc+ePe+6LY2Xl5cWLFigVatWac2aNTp8+LDOnTunQoUKqWHDhnr55ZeTfR9Ih6JFi2rChAmaMmWKtm3bptu3b6tKlSpq3769OnTokOCtLfr166datWrpyy+/dH4euXLlUq1atdSmTRvnvUfNUqVKFa1fv16BgYH65ZdfnD+sSPGtpT179kywhbRWrVpavXq15s6dqy1btujQoUMqXLiwBg0apH79+t11z9c7L/azb9++B6q1Xbt22rBhg7Jmzarnn3/+gZYxdOhQ3bx5U9u2bdPx48ddekzUr19f//3vf7Vw4UL99ttvOnHihOx2u4oVK6ann35avXr1UokSJR7ofR9ElSpVNHHiRE2bNk1//vmnsmTJourVq6tz584J9jiw2WwaO3asmjVrpiVLluivv/7SgQMH5OnpqapVq+r555/Xiy++mOA9ptNL0aJFtW7dOs2cOVPbt29XaGio3N3dVaRIEbVq1Uo9evTQ2bNn1aNHDwUFBSkqKipZVz338/PTunXrNGvWLG3dulWHDx9W3rx51aVLFw0aNEidO3fWpUuXXLpCd+nSRWXKlNGcOXN05MgRHTlyRF5eXvLz89Nzzz2njh07auTIkVqzZo02btzocv/gDz74QGPGjHHexuvOq41/9NFH8vf318qVK3X8+HGdPn1aVapUcY4vTo9wK0nDhg3Tb7/9pkuXLiXr6sn3+90BwJpsxv0MyAIAZDrTp0/XjBkzVK1atbtaFDObDRs26LXXXtPChQud3bwzisDAQI0bN07NmzfX1KlTzS4nzQwbNkyrV69Wy5YtNXHiRLPLyRRq1qypq1ev6ptvvlG1atXMLgcATMOYWwDAQyEmJkajRo1SjRo1Mlywlf65wE/Hjh1NrgQZyfTp0/Xcc88l2jIZHBysq1evysPDI8Pc5gkAzEK4BQA8FA4dOqRLly45x8Ga3XEpKipKhw4d0qlTpzRq1CgdOnRIPj4+plx8CxlXxYoVdfToUc2aNct5OzCHQ4cOOW831apVq2TdfxwAMjPG3AIAHgqFChVSlixZFBQUpBYtWsjLy0vLli0zrZ6IiAi1atXK+djNzU2jR4825eJbyLgaNWqkxo0b6+eff1bPnj1VuHBhFShQQFevXnXebu2JJ57QiBEjTK4UAMxHyy0A4KFQsGBBjR8/XsWKFVNoaGiqXEAsJQoUKCAfHx9ly5ZNPj4+mjlzZobsLg1z2Ww257j4OnXqyN3dXQcPHtStW7dUvXp1jR07Vl999RWttgAgLigFAAAAAMgEaLkFAAAAAFhephxze/VqpOLiaJAGAAAAgMzEzc2mPHkSvi91pgy3cXEG4RYAAAAAHiJ0SwYAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW6R6YWHhyswcK4iIsLNLgUAAABAGiHcItPbsmWjQkJOa8uWTWaXAgAAACCNEG6RqYWHhys4eLcMw9CePbtovQUAAAAyKcItMrUtWzbKMAxJkmEYtN4CAAAAmRThFpna3r3BstvtkiS73a6//95jckUAAAAA0gLhFpla5cq+cnd3lyS5u7urShU/kysCAAAAkBYIt8jU6tRpKJvNJkmy2WyqU6eBuQUBAAAASBOEW2Rq3t7e8vX1l81mk59fNXl5eZtdEgAAAIA0kMXsAoC0VqdOQ126dIFWWwAAACATsxmOS8lmIpcvRyguLtOtFgAAAAA81NzcbMqXzyvhaelcCwAAAAAAqY5wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDysqTXG8XGxmrEiBE6e/asYmJiNGDAABUtWlRjx46Vu7u7smbNqo8++kj58+fXuHHjtGvXLuXMmVOSNHPmTHl7e6dXqQAAAAAAi0m3cLtu3Trlzp1bn3zyia5evaq2bduqePHievfdd/X4449ryZIlmjNnjoYPH659+/Zp7ty5yps3b3qVBwAAAACwsHQLt82bN1ezZs2cj93d3TVp0iQVLFhQkmS32+Xp6am4uDidOnVKo0aN0qVLl9ShQwd16NAhvcoEAAAAAFhQuoVbRxfjiIgIDR48WK+//roz2O7atUuLFi3S4sWLFRUVpW7duqlnz56y2+3q3r27KleurAoVKqRXqQAAAAAAi0m3cCtJoaGhevXVV9WlSxe1bNlSkvTdd99p1qxZmj17tvLmzesMtNmzZ5ck1axZUwcPHryvcJsvn1ea1A8AAAAAyJjSLdxeunRJvXr10qhRo1SrVi1J0tq1a7V06VIFBgYqd+7ckqSTJ09qyJAhWr16teLi4rRr1y61bdv2vt7r8uUIxcUZqb0KAAAAAAATubnZEm3MtBmGkS4pcNy4cfr+++9VtmxZSfFjbI8cOaKiRYsqV65ckqSnnnpKgwcP1pw5c/TDDz/Iw8NDrVu3VufOne/rvQi3AAAAAJD5ZIhwm54ItwAAAACQ+SQVbt3SuRYAAAAAAFId4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAADp5vz5UE2cOE5hYaFmlwI8sPDwcAUGzlVERLjZpQC4A+EWAACkm7Vrlys6Olpr1qwwuxTggW3ZslEhIae1Zcsms0sBcAfCLQAASBfnz4fq0qWLkqRLly7QegtLCg8PV3DwbhmGoT17dtF6C2QgWcwuAEhMcPBu7dmzK8XLiYyMkCTlzOmVouX4+VWTr69/iusBgIfV2rXLXR6vWbNC/foNMqka4MFs2bJRhmFIkgzD0JYtm9S8eUuTqwIg0XKLh0BERDi/qgJABuBotf3n8QWTKgEe3N69wbLb7ZIku92uv//eY3JFABxouUWG5evrnyotpYGB8yRJAQG9U7wsAMCDy5+/gEvAzZ+/oInVAA+mcmVf7dmzS3a7Xe7u7qpSxc/skgD8P1puAQBAumjd+gWXx23adDCpEuDB1anTUDabTZJks9lUp04DcwsC4ES4BQAA6aJw4SLKn7+ApPhW20KFiphcEXD/vL295evrL5vNJj+/avLy8ja7JAD/j3ALAADSTevWL8jT05NWW1hanToNVaJESVptgQzGZjgu95aJXL4cobi4TLdaeECMuQUAAAAyBzc3m/LlS/guKLTcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAy8uSXm8UGxurESNG6OzZs4qJidGAAQP06KOPatiwYbLZbHrsscc0evRoubm5admyZVqyZImyZMmiAQMGqGHDhulVJgAAAADAgtIt3K5bt065c+fWJ598oqtXr6pt27aqUKGCXn/9ddWoUUOjRo3Shg0bVLVqVQUGBmrlypWKjo5Wly5d9PTTTytr1qzpVSoAAAAAwGLSLdw2b95czZo1cz52d3fXvn37VL16dUlSvXr1tHXrVrm5ucnf319Zs2ZV1qxZVbJkSR08eFC+vr7pVSoAAAAAwGLSbcxtzpw55eXlpYiICA0ePFivv/66DMOQzWZzTg8PD1dERIS8vb1dXhcREZFeZQIAHlLnz4dq4sRxCgsLNbsUAADSRXh4uAID5yoiItzsUlJFurXcSlJoaKheffVVdenSRS1bttQnn3zinBYZGalcuXLJy8tLkZGRLs/fGXaTI18+r1SrGdbn4eEuSSpQ4P72IwAPl3nzPlN0dLS+/XaVhg0bZnY5AACkuU2bflBIyGnt3LlVL7zwgtnlpFi6hdtLly6pV69eGjVqlGrVqiVJqlixooKCglSjRg39+uuvqlmzpnx9fTVlyhRFR0crJiZGx44dk4+Pz3291+XLEYqLM9JiNWBBsbF2SdLFi5njFykAqe/8+VCdP3/+//99Xnv3HlahQkVMrgoAgLQTHh6uoKAgGYahoKAgPfnk0/LyyviNQW5utkQbM9Mt3H7++ee6ceOGZs6cqZkzZ0qS3nnnHY0bN06TJk1S2bJl1axZM7m7uysgIEBdunSRYRgaMmSIPD0906vMZAkO3q09e3aleDmRkfHdrXPmTHlLs59fNfn6+qd4OQDwMFq7drnL4zVrVqhfv0EmVQMA1pbRzpU5T07Yli0bZRjxDYKGYWjLlk1q3rylyVWlTLqF25EjR2rkyJF3Pb9o0aK7nuvYsaM6duyYHmWZytG3PTXCLQDgwV26dPFfjy+YVAkAwIFz5bS1d2+w7Pb4Ho52u11//72HcPsw8vX1T5VffwID50mSAgJ6p3hZAIAHlz9/AZeAmz9/QROrAQBr41zZGipX9tWePbtkt9vl7u6uKlX8zC4pxdLtaskAAGRUrVu7XkSjTZsOJlUCAED6qFOnofPONTabTXXqNDC3oFRAuAUAPPQKFy6i/PkLSIpvteViUgCAzM7b21u+vv6y2Wzy86tmiYtJ3QvhFgAAxbfeenp60moLAHho1KnTUCVKlMwUrbYSY24BAJAU33r75pt3X/gQAIDMytvbWwEBfcwuI9XQcgsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQBYQHh4uAID5yoiItzsUjKtP/8M0vjx72rXrh1ml5KpHT9+VB98MEonThwzuxTggXFMRmZx/nyoJk4cp7CwULNLSRWEWwCwgC1bNiok5LS2bNlkdimZ1g8/fCtJ+v779SZXkrmtWrVUhmFo5colZpcCPDCOycgs1q5drujoaK1Zs8LsUlIF4RYAMrjw8HAFB++WYRjas2cXLQVp4M8/g1we03qbNo4fP6ro6FuSpOjoW7TewpI4JiOzOH8+VJcuXZQkXbp0IVO03mYxuwAA5gkO3q09e3aleDmRkRGSpJw5vVK8LD+/avL19U/xcjKTLVs2yjAMSZJhGNqyZZOaN29pclWZi6PV1uH779erWrXqJlWTea1atdTl8cqVS/Tmm++YVE3GwzHZGjgmI7NYu3a5y+M1a1aoX79BJlWTOmi5BZBiERHh/HKdhvbuDZbdbpck2e12/f33HpMrAh6Mo9U2scdIHRyT0xbHZGQWjlbbfx5fMKmS1EPLLfAQ8/X1T5Vf5AMD50mSAgJ6p3hZuFvlyr7as2eX7Ha73N3dVaWKn9klAQ/E0zObS6D19MxmYjUZD8dka+CYjMwif/4CLgE3f/6CJlaTOmi5BYAMrk6dhrLZbJIkm82mOnUamFtQJtS8+fMuj599li6GaaFduxddHrdv38mkSoAHxzEZmUXr1i+4PG7TpoNJlaQewi0AZHDe3t7y9fWXzWaTn181eXl5m11SpvPEEzVcHjPeNm2ULfuos7XW0zObypQpZ3JFwP3jmIzMonDhIsqfv4Ck+FbbQoWKmFxRyhFuAcAC6tRpqBIlStJCkIYcrbe02qatdu1elM1mo9UWlsYxGZlF69YvyNPTM1O02kqMuQUAS/D29lZAQB+zy8jUnniixl0tuEh9Zcs+qhEj3je7DCBFOCYjsyhcuIjefHOk2WWkGlpuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFhelvR8sz179mjixIkKDAzUkCFDdOnSJUnS2bNn5efnp8mTJ2vcuHHatWuXcubMKUmaOXOmvL2907NMAAAAAIDFpFu4nTNnjtatW6fs2bNLkiZPnixJun79urp3767hw4dLkvbt26e5c+cqb9686VUaAAAAAMDi0q1bcsmSJTV9+vS7np8+fbq6deumggULKi4uTqdOndKoUaPUqVMnrVixIr3KAwAAAABYWLq13DZr1kxnzpxxee7y5cvavn27s9U2KipK3bp1U8+ePWW329W9e3dVrlxZFSpUuK/3ypfPK9XqTkseHu6SpAIF6HadltjOaY9tDAAZB8dkZBbsy7hf6Trm9t9++OEHPf/883J3j99xs2fPru7duzu7LtesWVMHDx6873B7+XKE4uKMVK83tcXG2iVJFy+Gm1xJ5sZ2TntsYwDIODgmI7NgX0ZC3NxsiTZmmnq15O3bt6tevXrOxydPnlSXLl1kt9sVGxurXbt2qVKlSiZWCAAAAACwAlPD7YkTJ1SiRAnn43Llyqlly5bq2LGjAgIC1Lp1az322GMmVggAeFicPx+qiRPHKSws1OxSAGRwHC+QWezbF6zx49/V/v1/m11KqkjXcFu8eHEtW7bM+fi///2vcuXK5TLPyy+/rJUrV2rJkiXq3LlzepYHAHiIrV27XNHR0VqzhosZAkgaxwtkFuvWrZIkrV270uRKUoepLbcAAGQE58+H6tKli5KkS5cu0BoDIFEcL5BZ7NsXrLi4+HHNcXH2TNF6a+oFpQAAyAjWrl3u8njNmhXq12+QSdVkTMHBu7Vnz64ULycyMkKSlDNnyu9s4OdXTb6+/ileDnA/OF4gs3C02jqsXbtSFStWMama1EG4BQA89BytMP88vmBSJZlfRET8VU9TI9wCZuB4gczC0Wqb2GMrItwCAB56+fMXcDlhzZ+/oInVZEy+vv6p0koaGDhPkhQQ0DvFywLMwPECmYWbm7tLoHVzczexmtTBmFsAwEOvdesXXB63adPBpEoAZHQcL5BZtGrVzuVx69btTaok9RBuAQAPvcKFiyh//gKS4lthChUqYnJFADIqjhfILCpV8nW21rq5uVt+vK1EuAUAQFJ8a4ynpyetMADuieMFMgtH621maLWVGHMLAICk+NaYN98caXYZACyA4wUyi0qVfFWpkq/ZZaQaWm4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJb3wOG2ZcuWCg0NTc1aAACJOH8+VBMnjlNYGMddADDb8eNH9cEHo3TixDGzSwFwhyxJTZwxY0ai006cOKH58+frkUcekSQNHDgwdSsDADitXbtc0dHRWrNmhfr1G2R2OQDwUFu1aqkMw9DKlUv05pvvmF0OgP+XZLhdsWKFwsLCVKhQIWXNmtVlmt1u14YNG5QlSxbZbDbCLQCkkfPnQ3Xp0kVJ0qVLFxQWFqpChYqYXBUAPJyOHz+q6OhbkqTo6Fs6ceKYypQpZ3JVAKR7hNv169dr9OjR2rdvnz7++GP5+fk5p/n7++vLL79UiRIl0rxIAHiYrV273OUxrbcAYJ5Vq5a6PKb1FmYIDt6tPXt2pXg5kZERkqScOb1SvCw/v2ry9fVP8XJSIskxt97e3po0aZIGDx6s/v37a/LkybLb7elVGwBAcrba/vP4gkmVAAAcrbaJPQasJCIiXBER4WaXkWqSbLl1eO655/Tkk09qxIgRateunT766CPZbLa0rg0AICl//gIuATd//oImVgMADzdPz2wugdbTM5uJ1eBh5evrnyqtpIGB8yRJAQG9U7ysjCDZV0suVKiQ5s2bp/bt26tbt26Kjo5Oy7oAAP+vdesXXB63adPBpEoAAO3avejyuH37TiZVAuDfktVye6fu3bvr6aef1vfff++8UjIAIO0ULlzE2XqbP39BLiYFACYqW/ZRZ+utp2c2LiYFZCD3dZ/bW7duae/evbpx44Zq166to0ePateuXdq1K+WDmQEAiWvd+gV5enrSagsAGUC7di/KZrPRagtkMMluuf355581fPhwRUREyDAM2Ww2GYYhSbLZbDpw4ECaFQkAD7vChYvozTdHml0GAEDxrbcjRrxvdhkA/iXZ4XbGjBl68skn9dprr8nb2zstawIAAAAA4L4kO9yePHlSEydO1KOPPpqW9QAAAAAAcN+SPea2bNmyCgsLS8taAAAAAAB4IMluue3fv7/GjBmjPn36qFSpUsqaNavL9GrVqqV6cQAAAAAAJEeyw+3gwYMlSaNHj75rGheUAgAAAACYKdnhdsOGDWlZBwAAAAAADyzZ4bZYsWKJTjt//nyqFAMAAAAAwINIdrgNCQnRRx99pMOHD8tut0uSDMNQTEyMrly5ov3796dZkQAAAAAAJCXZV0seM2aMjh49qpYtWyosLEytWrVS1apVdfnyZb333ntpWSMAAAAAAElKdsvt7t27NXv2bD355JPauHGj6tevr6pVq6ps2bLasGGDXnjhhbSsEwAAAACARCW75fb27dvOcbdlypTRwYMHJUktW7bU33//nTbVAQAAAACQDMkOt6VKldKePXskxYfbvXv3SpJu3rypqKiotKkOAAAAAIBkSHa35C5dumjYsGGKi4tTs2bN1LZtW2XPnl1//vmn/Pz80rJGAAAAAACSlOxw27lzZ+XNm1d58+bVY489pvHjxyswMFD58+fXu+++m5Y1AgCQ5o4fP6olS75S5849VKZMObPLAQAA9ynZ4VaSmjVr5vx369at1bp161QvCAAAM6xatVSGYWjlyiV68813zC4HAADcp2SPuZWkP/74Q3369FGjRo109uxZTZ8+XWvWrEmj0gAASB/Hjx9VdPQtSVJ09C2dOHHM5IoAAMD9SnbL7ebNmzV48GC1atVKO3bsUFxcnGw2m9555x3Z7Xa1b98+LeuEhfz443cKCws1uwwnRy2BgfNMriReoUJF1LRpC7PLAHCHVauWujym9RbInIKDd2vPnl0pXk5kZIQkKWdOrxQvy8+vmnx9/VO8nNTAOVzSOIfL+JIdbmfMmKG3335bXbt21bfffitJGjhwoHLlyqX58+cTbuEUFhaqsHOnVdg7q9mlSJK83OMkSbbw8yZXIp0PjzG7BAAJcLTaJvYYAO4UEREuKXXCbUYSFhaqCxdCVLhwxlgvb+/4TqZubldNrkQ6fz7C7BKQDMkOt0ePHlW9evXuer5hw4aaOHFiqhYF6yvsnVU9axQzu4wMZ0HQWRlmFwHgLp6e2VwCradnNhOrAZBWfH39U6WV1NGSGBDQO8XLymgKF/ZSnz4ZoyU5I5k7d7fi4syuAveS7DG3efLkUUhIyF3P7927V/nz50/WMvbs2aOAgABJ0r59+1S3bl0FBAQoICBA3333nSRp2bJlateunTp27KiNGzcmtzwAAB5Yu3Yvujxu376TSZUAAIAHleyW244dO+q9997TiBEjJEmnT59WUFCQJk2apM6dO9/z9XPmzNG6deuUPXt2SdL+/fvVs2dP9erVyznPxYsXFRgYqJUrVyo6OlpdunTR008/raxZM0b3VgBA5lS27KPO1ltPz2zcCggAAAtKdsttv3791LhxYw0aNEg3b95U7969NWbMGLVv316vvPLKPV9fsmRJTZ8+3fl479692rRpk7p27aoRI0YoIiJCwcHB8vf3V9asWeXt7a2SJUvq4MGDD7ZmAADch3btXpTNZqPVFgAAi0p2y63NZtNbb72lV199VceOHZOHh4dKly6tbNmSNy6pWbNmOnPmjPOxr6+vXnjhBVWuXFmzZs3SZ599pgoVKsjb29s5T86cORURcf+Dt/PlyxiD4O/Fw8NdklSggPc95rQWDw933Ta7iAzMw8M9U37mUubbl/FwKVDAXzVqMM4srXG8SHts47SXWbexh4e77Hazq8i4OIfL+JIdbiUpPDxcp06dUmxsrGJjY7V//37ntGrVqt3XGzdp0kS5cuVy/nvs2LF68sknFRkZ6ZwnMjLSJewm1+XLEYqLy/iX7YmNjT96XLwYbnIlqSs21i6b2UVkYLGx9kz5mUuZb18GkPo4XqQ9tnHay6zbODbWLrdk9+t8+HAOlzG4udkSbcxMdrhds2aNRo8erZiYGBmGa3C02Ww6cODAfRXVu3dvvfvuu/L19dX27dtVqVIl+fr6asqUKYqOjlZMTIyOHTsmHx+f+1ouAAAAAODhk+xwO2XKFLVq1UovvfRSsrsiJ2XMmDEaO3asPDw8lD9/fo0dO1ZeXl4KCAhQly5dZBiGhgwZIk9PzxS/FwAAAAAgc0t2uL1+/bp69+6t0qVLP/CbFS9eXMuWLZMkVapUSUuWLLlrno4dO6pjx44P/B4AAAAAgIdPsnvVP/PMM9qyZUta1gIAAAAAwANJdsvt22+/rZYtW+p///ufSpYsKbd/jTYfO3ZsqhcHAAAAAEByJDvcfvDBB4qMjNTNmzd1+vRpl2k2G9fGBQAAAACYJ9nhdtOmTZo1a5bq1q2blvUAAAAAAHDfkj3mNk+ePCpatGha1gIAAAAAwANJdrh97bXX9MEHHygkJCQt6wEAAAAA4L4lu1vyF198oZCQEDVt2lSS5O7u7jJ97969qVsZAAAAAADJlOxw27dv37SsAwAAAACAB5bscNu2bdtkzde7d29NmDBBBQsWfOCiAAAAAAC4H8kec5tcu3btUnR0dGovFgAAAACARCW75Taz+PHH7xQWFmp2GZLkrCMwcJ7JlfyjUKEiatq0hdllAMB9CQ7erT17dqVoGZGREZKknDm9UlyPn181+fr6p3g5sIaMdG4hcX4B4OH10IXbsLBQnQ0NVc48hcwuRbasOSVJ127FmVxJvMirYWaXAACmiYgIl5Q64RYPl7CwUF04F6rCuQqYXYokyTtLDkmSW8RtkyuJd/7GRbNLAPCQeOjCrSTlzFNIvo0DzC4jwwn+OdDsEgDggfj6+qe4pdTRyhUQ0Ds1SsJDpnCuAupV8wWzy8iQ5v++XBnjZ3wAmV2qj7kFAAAAACC9EW4BAAAAAJaX6uHWZrOl9iIBAAAAAEhSqodbd3f31F4kAAAAAABJeuBwO3v2bN24ceOu5//44w+VKFEiRUUBAAAAAHA/krxa8rlz5xKdNmvWLFWrVk1FixaVJOf/AQAAAABIb0mG20aNGiU6htYwDAUEBMgwDNlsNh04cCBNCgQAAAAA4F6SDLdTpkzRmDFjVL58eb3yyivKkiV+dsMw1KdPH33wwQcqVKhQuhQKAAAAAEBikhxz27x5c61fv15Zs2bVhx9+qFy5cumJJ57Qk08+KZvNpipVquiJJ57QE088kV71AgAAAABwl3teUKpAgQKaM2eOOnTooK5du2rOnDkyDCM9agMAAAAAIFmS7JZ8p65du6p27doaOnSoNmzYILvdnpZ1AQAAAACQbPd1K6AyZcrom2++UZ06dVSgQAHnGFwAAAAAAMx0X+F227Zt2r59uwYOHKgNGzZo/vz5+v3339OqNgAAAAAAkiXZ4XbNmjXq27evjh8/7nzu+vXr6tOnj77//vs0KQ4AAAAAgORIdr/i2bNna/To0XrhhRecz3388cd68sknNXPmTD377LNpUiAAAAAAAPeS7Jbbs2fPqmbNmnc9X6tWLZ0+fTpViwIAAAAA4H4ku+W2ZMmS2rx5s7p16+by/NatW1WkSJFULwwAMoPg4N3as2dXipcTGRkhScqZ0yvFy/LzqyZfX/8ULwcAACAjSXa47d27t0aOHKn9+/erSpUqkqS9e/dq3bp1GjVqVJoVCACQIiLCJaVOuAUAAMiMkh1u27Rpo6xZs+qrr77S999/Lw8PD5UtW1aTJ09W48aN07JGALAsX1//VGklDQycJ0kKCOid4mUBAABkRvd1o9oWLVqocePGypo1qyTp3LlzKlq0aJoUBgAAAABAciX7glIXL15Uly5dNGPGDOdz7du3V0BAgK5cuZImxQEAAAAAkBzJDrfjxo2TzWZTu3btnM8tWrRIcXFx+vDDD9OkOAAAAAAAkiPZ3ZK3b9+uxYsXq3Tp0s7nypUrp3fffVcvvfRSGpQGAAAAAEDyJLvl1maz6ebNm3c9b7fbFRsbm6pFAQAAAABwP5IdbuvUqaMPPvhA586dcz4XGhqqDz/8UE8//XSaFAcAAAAAQHIku1vyiBEj1LNnTz3zzDPKmzevJOnKlSuqWLGiJk6cmGYFAgAAAABwL0mG2/3796t8+fJyd3dXvnz5tHr1am3btk1HjhxRlixZVK5cOdWuXVs2my296gUAAAAA4C5Jhttu3brpu+++U+HChdW9e3fNmDFDdevWVd26ddOrPgAAAAAA7inJcOvh4aHly5erRo0a2rFjh3bs2KFHHnkkwXmfeuqpNCkQwN1+/PE7hYWFml2Gk6OWwMB5Jlfyj0KFiqhp0xZmlwEAAIB0kmS47d27tyZPnqzPPvtMNptNAwcOTHA+m82mAwcOpEmBAO4WFhaqM+dDlC1/DrNLkSQZ2eOHJly6fdnkSuLduhRldgkAAABIZ0mG2759+6pbt24KDw9X/fr1tXr1aufFpACYK1v+HCrVtpLZZWRIp1bvM7sEAAAApLN7Xi05R44cypEjh7766is99thjypIl2RdYBgAAAAAgXSQ7qfr7+2vFihU6cuSIYmJi7po+duzYVC0MAAAAAIDkSna4HTZsmH788Uc9/vjj8vT0dJnGrYAAZDZctOveuGiXNbAvJ439GPhHRESEIiMjNHfubrNLyXBCQyOUM6dHipfDMfneUnJcTna43bx5syZNmqQmTZo80BsBgJWEhYXqwtkQFc6Z0+xSJEne//8jotu1KyZXEu98ZKTZJSCZwsJCdf5ciPLlym52KZKkbP9/5hEbccncQiRdvnHT7BIAPGTCwkIVGhaqRwoVMrsUSZLH/5/nRCnO5EriXQ8LS9Hrkx1uvby8VKZMmRS9GQBYSeGcOdXHl4t2JWRu8L4M8jWI5MiXK7ta1a5gdhkZzrptB80uAchQvLy8lCtXrPr08Te7lAxn7tzdiovzSpVlPVKokOp275Yqy8psfvtqUYpe75bcGfv27auPP/5Y586dS9EbAgAAAACQ2pLdclupUiVNnTpVzzzzjNzc3O4aZ7t3795ULw4AAAAAgORIdrgdMWKESpcurVatWilHjhxpWRMAAAAAAPcl2eE2JCRE69atU+nSpdOwHAAAAAAA7l+yx9xWrlxZp06dSstaAAAAAAB4IMluue3ataveeecdvfDCCypZsqSyZHF9acuWLe+5jD179mjixIkKDAzUgQMHNHbsWLm7uytr1qz66KOPlD9/fo0bN067du1Szv+/LPXMmTPl7e19n6sFAAAAAHiYJDvcvvHGG5KkWbNm3TXNZrPdM9zOmTNH69atU/bs8ffZGz9+vN599109/vjjWrJkiebMmaPhw4dr3759mjt3rvLmzXs/6wEAAAAAeIglO9wePJiye8GVLFlS06dP19tvvy1JmjRpkgoWLChJstvt8vT0VFxcnE6dOqVRo0bp0qVL6tChgzp06JCi9wUAAAAAZH7JDrcp1axZM505c8b52BFsd+3apUWLFmnx4sWKiopSt27d1LNnT9ntdnXv3l2VK1dWhQr3d+P5fPkSv8Gyh4e7dCvuwVbiIeDh4a4CBVLWDdzDw123U6mezCi1tjEbOWkp3c4eHu6yp2I9mVFq7MsZiYeHuyRlqnWS4tcr1uwiMrDUOibbOSgnieOFNXh4uMvOl1+iUu0cLpYskpSUbOd0C7cJ+e677zRr1izNnj1befPmdQZaR9flmjVr6uDBg/cdbi9fjlBcnJHgtNhY/mKTEhtr18WL4Slehu3esz20UmsbI2kp3c6xsfbkX3HvIZUa+3JG4vi7ykzrJHG8uJfUOiZzvEgaxwtriI21y42dOVGcw6WPe21nNzdboo2Zpu2+a9eu1aJFixQYGKgSJUpIkk6ePKkuXbrIbrcrNjZWu3btUqVKlcwqEQAAAABgEaa03Nrtdo0fP15FihTRoEGDJElPPfWUBg8erJYtW6pjx47y8PBQ69at9dhjj5lRIgAAAADAQtI13BYvXlzLli2TJO3YsSPBeV5++WW9/PLLaVZDRESEIsPDFfxzYJq9h1VFXg1TllS47VL8No7WgqCzqVBV5nI+PFo5bRFml4FkiIiIUGRkpOYG7zO7lAwpNDJSObNkNbsMIEOIiIhQ5I0bmv/7crNLyZBCb1xQTuVK8XJ+/PE7hYWFpkJFKeeoIzBwnsmV/KNQoSJq2rSF2WUApjJ1zC0AAACQHGFhoQoNPZshbhfp6ekpSYqOvmlyJfGuXLlidglAhvDQhVsvLy/dzpJDvo0DzC4lwwn+OVBe2VI+DNvLy0veRoR61iiWClVlLguCzsrwSvxq3sg4vLy8lOt2jPr4Mu4/IXOD9ymOfRmQ9P/HC2VTr5ovmF1KhjT/9+WK80qdU868efPq2WefTZVlZSbff/+92SUAGQLXQwMAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlZTG7AADAw+vHH79TWFio2WVIkrOOwMB5Jlfyj0KFiqhp0xZmlwEASCURERG6ERmu375aZHYpGdK1sDDF5fR+4NcTbgEApgkLC9X50PPKm7uI2aUoW9b4L9OYmzaTK4l35VrGCP0AAFgF4RYAYKq8uYvo+Qb9zC4jw/l20xeSDLPLAACkIi8vL7l55VDd7t3MLiVD+u2rRcqRgpGzjLkFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFheFrMLAHD/IiIidCsiSqdW7zO7lAzp1qUoRXh5png55yMjNTc4Y2zjiJgYSZJX1qwmVxLvfGSkCubOa3YZAAAAToRbAEhAoUJFJElxJtfhEB4WKknKkUECZcHceZ3bCAAAICMg3AIW5OXlpVvZolWqbSWzS8mQTq3eJ68sXilaRtOmLVKpmtQRGDhPkhQQ0NvkSgAAADImxtwCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACwvi9kFAACAtBMREaGIG1Fat+2g2aVkOJdvRMlLEamyrPM3Lmr+78tTZVkpFREdKUny8sxpciXxzt+4qIJeRVK8nIiICIWHX9f333+fClVlLleuXJG39yNmlwGYjnALAACQAoUKxQe3OJPrcAiPjJIk5ciXMcJOQa8izm0EAGmJcAsAQCbm5eUlT91Sq9oVzC4lw1m37aA8vLxSvJymTVukQjWpJzBwniQpIKC3yZWkLi8vL3l4uOvZZ581u5QM5/vvv5enZ3azywBMx5hbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB73uQUAmCYiIkLh4RH6dtMXZpeS4Vy+Fipve8rvwQoAyFiuh4Xpt68WmV2GJOlWRIQkKVsq3PM7NVwPC1OOQkUe+PWEWwAAAABIB4VSENzSQnhkpCQpr1cukyuJl6NQkRRtI8ItAMA0Xl5eyururecb9DO7lAzn201fKGt2w+wyAACpqGnTFmaX4CIwcJ4kKSCgt8mVpA7G3AIAAAAALI9wCwAAAACwPMItAAAAAMDy0jXc7tmzRwEBAZKkU6dOqXPnzurSpYtGjx6tuLg4SdKyZcvUrl07dezYURs3bkzP8gAAAAAAFpVu4XbOnDkaOXKkoqOjJUkTJkzQ66+/rq+//lqGYWjDhg26ePGiAgMDtWTJEs2bN0+TJk1STExMepUIAAAAALCodAu3JUuW1PTp052P9+3bp+rVq0uS6tWrp23btik4OFj+/v7KmjWrvL29VbJkSR08eDC9SgQAAAAAWFS6hdtmzZopS5Z/7jxkGIZsNpskKWfOnAoPD1dERIS8vb2d8+TMmVMR/39jYQAAAAAAEmPafW7d3P7J1ZGRkcqVK5e8vLwU+f83EnY8f2fYTa58+bwSnebh4S7dirvvZT4sPDzcVaDA/W/zfy/jTHiMFgSdTaWqUiYi2i5J8vJ0N7kS6Xx4jIrnTZ1trNupVFQmlRr7ckbi4RG//2amdZLi1yvmJsfkxKTWMTk2lerJjDLbsULK3MeL0NAr+v77780uRTdv3pQkZc+e3eRK4l25ckUlS5ZMlePF2bMRmjt3dypVljIREfHDE728sppciXT+fISKFcufKf+upMxzvDAt3FasWFFBQUGqUaOGfv31V9WsWVO+vr6aMmWKoqOjFRMTo2PHjsnHx+e+l335coTi4hK+8X1srD2lpWdqsbF2XbwYnqJl5M1bULGxdiX8CaS/iKhQSVJO78ImVyIV8o7fPindxuzH95Ya+3JG4vjMM9M6SY71spldRoaVGvsxx4ukZbZjhZR5jxeO84uM4Nq1a5Kk3LnzmlvI/ytSpFiqnF84tnFcBvnNMTw8/hwuR448JlciFSyYJ1W2cUZjxeOFm5st0cZM08Lt0KFD9e6772rSpEkqW7asmjVrJnd3dwUEBKhLly4yDENDhgyRp6enWSXiATVt2sLsElwEBs6TJAUE9Da5EgAA8KAy0vlFZj23yEjbWMq82xlpJ13DbfHixbVs2TJJUpkyZbRo0aK75unYsaM6duyYpnVEXg1T8M+BafoeyRFzM348cdbsiXejTk+RV8OUu0gRs8sAAAAAgPtmWsutWQoVyjjhLex6/Pji3HlymVxJvNxFimSo7QMAAAAAyfXQhduM1N2CrhYAAAAAkDrS7VZAAAAAAACkFcItAAAAAMDyCLcAAAAAAMt76MbcAgAylivXQvXtpi/MLkM3b8Xf4y97toxxI/sr10JVOHvq3J/78o2bWrftYKosK6WiomMlSTk8PUyuJH67FM4YNywAAKQCwi0AwDT/XKHdMLUOSbp6Iz7cPpInY6SdwtkLp8oV7DPaVfBvRYZKkh7Jl9/kSqTCXhlv+wAAHhzhFgBgGq5gn/Yy0jaWMu92BgCYjzG3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACwvi9kFAEBmFhy8W3v27ErxcsLCQiVJgYHzUrwsP79q8vX1T/FyAAAAMhLCLQBYgJeXt9klAAAAZGiEWwBIQ76+/rSSAgAApAPG3AIAAAAALI9wCwAWEB4ersDAuYqICDe7FAAAgAyJcAsAFrBly0aFhJzWli2bzC4FAAAgQyLcAkAGFx4eruDg3TIMQ3v27KL1FgAAIAFcUAqwqFuXonRq9T6zy5Ak3Y6KlSRlyeFhciXxbl2KkgrnM7uMVLNly0YZhiFJMgxDW7ZsUvPmLU2uCgAAIGMh3AIWVKhQEbNLcBF2M/4erPlzZZBAWThfhttGKbF3b7DsdrskyW636++/9xBuAQAA/oVwC1hQ06YtzC7BRWDgPElSQEBvkyvJnCpX9tWePbtkt9vl7u6uKlX8zC4JAAAgw2HMLQBkcHXqNJTNZpMk2Ww21anTwNyCAAAAMiDCLQBkcN7e3vL19ZfNZpOfXzV5eXmbXRIAAECGQ7dkALCAOnUa6tKlC7TaAgAAJIJwCwAW4O3trYCAPmaXAQAAkGHRLRkAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5WUx881XrVql1atXS5Kio6N14MABLVmyRP3791fp0qUlSZ07d1aLFi1MrBIAAACZQXDwbu3ZsyvFywkLC5UkBQbOS/Gy/PyqydfXP8XLyUgy2nbOjNsYCTM13LZr107t2rWTJL333ntq37699u/fr549e6pXr15mlgYAAAAkyMvL2+wSHgpsZ9wvU8Otw99//62jR49q9OjRGj16tE6cOKENGzaoVKlSGjFihLy8vMwuEQAAABbn6+tPC146YDvDLBlizO0XX3yhV199VZLk6+urt99+W4sXL1aJEiX02WefmVwdAAAAACCjM73l9saNGzp+/Lhq1qwpSWrSpIly5crl/PfYsWPve5n58lmjpdfDw12SVKAAXS7SEts57bGNkRmwH6cPtnPaYxsDSK7MdrwwPdz+8ccfql27tvNx79699e6778rX11fbt29XpUqV7nuZly9HKC7OSM0y00RsrF2SdPFiuMmVZG5s57THNkZmwH6cPtjOaY9tDGR+qX3RrkmTpqR4Wel14S43N1uijZmmh9sTJ06oePHizsdjxozR2LFj5eHhofz58z9Qyy0AAAAAIGmZ7aJdpofbPn36uDyuVKmSlixZYlI1AAAAAJCxcdGuhGWIC0oBAAAAAJAShFsAAAAAgOURbgEAAAAAlmf6mFsAAFIqNa4a6bhiZGDgvBTXk15XjAQAAP8g3AIAoMx3xUgAAB42hFsAgOVx1UgAAMCYWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWx62AkGEFB+/Wnj27UrycsLBQSVJg4LwULcfPrxq3GgEAAAAyKMItMj0vL2+zSwAAAACQxgi3yLB8ff1pKQUAAACQLIy5BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYXhazCwAAAIAUHLxbe/bsSvFywsJCJUmBgfNSvCw/v2ry9fVP8XIAID0QbgEAADIRLy9vs0sAAFMQbgEAADIAX19/WkkBIAUIt8BDjC5wAAAAyCy4oBSAFPPy8qYbHADgoREeHq7AwLmKiAg3uxQAd6DlFniI0QUOAID7t2XLRoWEnNaWLZvUvHlLs8sB8P9ouQUAAACSKTw8XMHBu2UYhvbs2UXrLZCB0HL7ABinCAAA8HDasmWjDMOQJBmGQestkIHQcmsixikCAABYy969wbLb7ZIku92uv//eY3JFABxouX0AjFMEAAB4OFWu7Ks9e3bJbrfL3d1dVar4mV0SgP9Hyy0AAACQTHXqNJTNZpMk2Ww21anTwNyCADgRbgEAAIBk8vb2lq+vv2w2m/z8qjHEDMhA6JYMAAAA3Ic6dRrq0qULtNoCGQzhFgAAALgP3t7eCgjoY3YZAP6FbskAAAAAAMsj3AIAAAAALM9mOO5CnYlcvhyhuLhMt1oAAJgmOHi39uzZleLlhIWFSpIKFSqS4mX5+VXj1nwA8JBxc7MpXz6vBKcx5hYAAKQbriwLAEgrtNwCAAAAACwhqZZbxtwCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8rKYXUCbNm3k7R1/Q/fixYurf//+GjZsmGw2mx577DGNHj1abm5kcAAAAABA4kwNt9HR0ZKkwMBA53P9+/fX66+/rho1amjUqFHasGGDmjRpYlaJAAAAAAALMLVJ9ODBg7p586Z69eql7t2766+//tK+fftUvXp1SVK9evW0bds2M0sEAAAAAFiAqS232bJlU+/evfXCCy/o5MmTevnll2UYhmw2myQpZ86cCg8Pv+/l5svnldqlAgAAAAAyMFPDbZkyZVSqVCnZbDaVKVNGuXPn1r59+5zTIyMjlStXrvte7uXLEYqLM1KzVAAAAACAydzcbIk2ZpraLXnFihX68MMPJUlhYWGKiIjQ008/raCgIEnSr7/+qieffNLMEgEAAAAAFmAzDMO0Js6YmBgNHz5c586dk81m05tvvqk8efLo3XffVWxsrMqWLatx48bJ3d39vpZLyy0AAAAAZD5JtdyaGm7TCuEWAAAAADKfDNstGQAAAACA1EC4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOWZep/btOLmZjO7BAAAAABAKksq62XKqyUDAAAAAB4udEsGAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4TYVnDlzRuXLl9epU6fumrZq1SrVq1fPhKqsLaltmlqCgoJUvnx53b59O0XL4TNOnsuXL+u7774zu4wMZ/LkyQoICGA/ekCpdfydPn26OnfunNrlPTTS45iNB3c/x9/U+m4EkDkEBARo8uTJZpeRbFnMLgAwi7+/v7Zs2aIsWfgzSA8TJ05UbGysWrRoYXYpGVKLFi3UoEEDs8vIVNim6adIkSLasmWL8ubNa3YpSADHXwAPC87q8dDKmjWrChQoYHYZDw3DMMwuIUPLli2bsmXLZnYZmQrbNP24u7tzPM3AOP4CeFjQLTkV/fjjj6pfv76qVaumcePG3dWlJ6GuPsOGDdObb77pfPzzzz/rueeek5+fn9q2batff/3VOe3QoUPq2rWrqlatqqeffloffvhhpug2FBISon79+snf31/16tXT559/ftc8x44dU58+feTv768qVaqoc+fOOnLkiHP61KlTVbduXVWpUkUvvviidu/efc9p//48kqpj9+7d6tKli/z8/FS1alX17t1bYWFhabVJ0lxi63r+/Hm99tprql69umrUqKH3339f0dHRkhLu4nlnV5Vhw4Zp3Lhx+s9//qOqVauqWbNmWrVqlaT4Lp+rV6/W+vXr1ahRI0lS+fLlNWXKFNWsWVMvvfSSnn32Wc2ZM8dl+R07dtSCBQvSdFukt6NHj6pz587y8/NTz549de3aNUl3b9+k9un9+/erW7du8vPz0zPPPKMVK1Y4px07dky9e/dWtWrVVKdOHU2fPl1xcXHptn5m+eWXX9SkSRP5+vqqX79+unr1qss2DQoK0tNPP63FixerRo0aqlWrlmbMmOGyjNu3b2vcuHF64oknVKtWLc2dO9c5LS4uTnPnzlXjxo3l6+urbt266eDBg87p5cuX17Jly9SkSRP5+/vrP//5jyIiItJn5TOAO7slJ3W8HjZsmMqXL3/Xfzt27FBAQECC086ePWvy2pnDsU03bNigRo0ayd/fXx9++KEOHTqkdu3aqWrVqurfv7+ioqIkSUuXLtUzzzwjf39/de7cWcHBwZISPv7e6zv1YefY9uvWrVO9evX05JNP6v3331dsbKyk+HOCzp07q2rVqmrUqJEWL17sfO2wYcP03nvvacCAAfL19VXr1q21c+dOs1Yl3Tm23WeffaannnpKw4cPT/LcNi4uThMnTlSNGjVUo0YNzZw5U02aNFFQUJAk6datW3rnnXf0xBNPqG7dulq+fLkqVqyoM2fOSLr3vnzkyBF1795dvr6+atKkiebPn/9Q/NiT0OewceNGtW3bVr6+vnr22Wf1/fffO+e32+2aNm2a6tatq2rVqmnAgAG6cOHCXcs9e/as6tSpo48++ig9V+e+EG5T0fLlyzVp0iR9/vnn+vnnnzV9+vT7ev3Bgwf11ltv6eWXX9b69evVsWNHDRw4UAcOHJAkvfXWWypbtqzWr1+vKVOmaO3atS4ntVYUExOj3r17K0uWLFq6dKnGjx+vuXPnav369c55DMPQK6+8oqJFi2rt2rVasmSJ4uLi9PHHH0uSfvrpJy1evFgTJ07Ud999p4oVK2rw4MGKi4tLclpy6li3bp0iIiLUr18/1a5dW99++63mzZunM2fOaNasWem6rVJLYuu6evVq9ejRQ1FRUfrqq680depU/frrr/rwww+TvewlS5bo8ccf16pVq1SnTh2NGTNG165dU69evfTss8+qWbNmLvvshg0b9PXXX+udd97Rc88953KgPXv2rP7++289++yzqbr+ZoqJiVHfvn1VvHhxrVq1So0bN9by5cvvmi+p/fbKlSt66aWXVLZsWa1evVpDhgzRmDFjtHPnTl25ckVdunRRwYIFtXz5co0ZM0aLFy/W/PnzTVjb9LVq1Sp9+umnCgwM1P79+zV79uy75rl27ZpWrlyp+fPna+zYsVqwYIG+/vpr53RHGFi9erX69eunTz75RIcOHZIkffbZZ5o/f76GDx+u1atXq3jx4urTp49LgJ02bZpGjBihr776SkeOHNHIkSPTeK0znnsdr9955x1t2bLF+V+jRo1UtWpV+fv7a/r06c7nf/31V1WuXFnNmjVTsWLFTF4rc82ZM0czZ87UmDFjtGDBAg0ePFhvvfWW5syZoz/++EMrV67UL7/8oqlTpzr3z3r16qlHjx66cOHCXcffe31G+Mdnn32mSZMm6bPPPtPPP/+sKVOm6NixY+rRo4eeeuoprV69WoMGDdInn3zi8v21fPlylStXTqtXr1aNGjXUt29fXbp0ycQ1SX87d+7UypUr1aNHjyTPbb/44gutWbNGEydO1IIFC7Rp0yaFhIQ4lzNu3Dj9+eefmjt3riZPnqy5c+fKbrdLuvfx5tatW+rTp4+qVq2qdevWaeTIkfryyy+1aNGi9N8gJnF8DlWrVtWgQYPUunVrrV27Vi+++KLefPNNlx/Bli1bpnHjxmn58uWKjo7W0KFDXZZ19epV9enTR/Xq1btrWoZiIMVCQkIMHx8fY8OGDc7nVq1aZVSvXt1YuXKlUbduXcMwDOP33383fHx8jNjYWOd8Q4cONd544w3DMAzjzTffNMaOHeuy7GHDhhnDhw83DMMwqlWrZnz66afG7du3DcMwjL///tsICQlJ03VLaxs3bjT8/PyMGzduOJ9bu3atsWDBAsPHx8c4efKkERkZacyePduIiIhwzvPNN98YDRo0MAzDMBYsWGDUqlXLOH36tGEYhhEeHm5s27bNiI2NTXLanZ9HYnX89NNPxoULF4y5c+cacXFxzmkTJ040unbtahiG4fIZW0Fi67p69WrD19fXuHr1qvP5zZs3G48//rhx48aNBNezW7duxqRJkwzDiN+X27Zt65wWHh5u+Pj4GDt27HBOd+zrhmEYPj4+RmBgoPPxyZMnDR8fH+dnNWfOHKNbt26pt+IZwMaNG42qVau67MuDBg0yunXr5rJ9k9pvFy1aZDRo0MB5HDAMwwgMDDSCgoKML7/80qhbt64RExPjnPb1118bNWrUSKc1TH+O4++mTZucz40fP9546aWXEjz+7tu3zznf1KlTjVatWhmGYRjTpk0znn76acNutzunP/nkk8batWuNuLg4o3r16sbixYud02JiYoz69esbixYtMgwjfn9esGCBc/r27duNChUquPw9ZWaOz+HAgQNJHq/v9PXXXxvVq1c3zp07d9e0Tz75xGjSpIkRHh6epnVnZAnt29WrVzemTp3qfNy/f39jzJgxRufOnV32P8OIPz7PmDHDMAzX4++9vlMTOld52Di2/Y8//uh8bsWKFUb16tWNDz74wOjQoYPL/J988onRrl07wzDit3XLli2d0+x2u9GoUaO7Pp/MyrHtfvnlF8Mw7n1uW6dOHWPJkiXOaceOHTN8fHyM33//3YiIiDAqVapk/Pbbb87pv/76q+Hj42OEhITcc19etmyZy2dhGPHn588880zqrnQG9O/P4dVXXzVee+01l3lef/11Y9CgQUZcXJxRs2ZNY9myZc5pp06dMj799FPDbrcb3bp1MyZMmGC8+OKLxqBBg1zOPzIixtymoipVqjj/XbFiRV27dk1XrlxJ9uuPHTumw4cPa+XKlc7nYmNj5evrK0n6z3/+o3Hjxmnp0qWqV6+ennvuOVWuXDn1VsAER48eVcmSJeXt7e18rlWrVjpz5owmTJggScqRI4e6dOmitWvXau/evTp+/Lj279+v3LlzS5JatmypVatWqUmTJqpSpYoaNWqkDh06KEuWLElOS04dDm3bttXChQt14MABHT16VIcOHXJ+LlaT2LrOnj1bJUuWdG5XSapWrZrsdrtOnjyZrGWXKFHC+W8vLy9JSrLr/J0tMqVKlVKVKlX0/fffq2/fvvruu+/UsWPHZK6VNRw9elQlSpRQzpw5nc9VrlxZv/32m8t8Se23R48eVYUKFeTu7u6cv1u3bpKk//73v6pYsaI8PDyc0/z9/XX16lVduXIlU1/s5859z9vb29md/k6enp6qWLGi83HlypVdWniLFSsmN7d/OjQ5lnP58mVdu3ZNfn5+zmkeHh6qXLmyjh075nzO39/fZdlxcXE6ceKEy/OZXfbs2ZM8XjsEBwdrwoQJmj59uooUKeIy7eeff1ZgYKCWLFniPI48zIoXL+78t6enp4oWLep8nC1bNsXExOjYsWOaNGmSpk6d6pwWExOjwoUL37W8e32n4h///pu+du2a9u/f73IscMx3Z9fkO1/n5uamihUr6vjx42lfcAbi+H5P6tz2ypUrunDhgsv5c9myZfXII49Iko4fP67Y2FiX6Xdu23vty8ePH9fRo0ddXhMXF6eYmBjFxMQoa9asabLuGcmdn8O/z6n8/f21bNky5zlCpUqVnNNKliyp//znP87HixcvVmxsrLp16+Zy/pEREW5T0Z0nRcb/9+e/8yTTZrPd9Zo7T/ztdrt69+6tdu3auczj+OPr2rWrGjZsqA0bNmjTpk165ZVXNGDAAA0aNChV1yM93bl9EhMZGakOHTrokUceUePGjfX888/r+PHjzpPSfPnyadWqVdq+fbs2b96spUuXavHixVq5cqUKFSqU6LTk1hEWFqb27dvr8ccfV506ddSxY0dt2rRJf/75Z8pW3iSJraunp+ddzzm6/sTFxd1z/01s2UYSY1v+/Z7PP/+81q9fr2effVaHDx9Ws2bNEn2tVf17eyR0te6k9umk9tWEPkNHF/zMPu7231+2Ce13/54nLi7O5bh957/vlNB2leL/Phx/I/9evmN7J7bMzCo6OjrJ47UU37XttddeU8+ePVW/fn2X1586dUrDhg3TO++8o8cffzy9y8+Q/n2MSGifstvtGjp0qOrUqePyfI4cOe6a917fqfhHQn/TCYmLi3M5Fvz7M7Pb7Ql+h2ZmjuNmUue2ju307+O143FC0+/897325du3b6t69ep677337qrvYblThuNzSOz8wG63J+tc3MfHRwMGDNDgwYOd58QZ1cP1rZvGDh8+7Px3cHCwChQo4NI65th57hyj5RgQL0llypRRSEiISpUq5fxv7dq1+umnnxQdHa1x48bJZrMpICBA8+bN08CBAy1/39DSpUsrJCTkrnFrd17oZceOHTp//rwCAwPVp08f1a5dW+fOnXMe4DZt2qSlS5eqbt26GjlypH744QdFRkbqzz//THJacuoYNmyYfvrpJ+XMmVNz5sxRjx499OSTTyokJMSyFyRIbF3nzJmj06dPOy9wJEl//fWX3N3dVbJkSXl4eCgyMtK53oZhuOy/95KcL/YWLVrowIEDWrFihWrXrq08efIkf8Us4LHHHtPp06d1/fp153P79++/a76k9ttSpUrp0KFDLidaw4cP19SpU1WuXDnt37/fedETKf7CJ7lz587UrbbJFRUVpdOnTzsf//333ypfvvw9X+ft7a0CBQpoz549zudiY2O1b98+lSlTxvmcYwyZJO3du1ceHh4qW7ZsKlVvDfc6XsfFxenNN99U8eLFNXjwYJfX3rx5U4MGDVLDhg0zXa+NtFamTBmdP3/e5fxh/vz52rFjhyTX4++9PiP8486Lxu3du1f58+dX1apVXY4FUvxxNrFjgd1u18GDB5N1rMmMkjq3zZUrlwoWLKh9+/Y55w8JCdGNGzckyXnucef0vXv3Ov99r325TJkyOnnypIoVK+Z87wMHDmjOnDkP3Q+P5cqVS3S/9fb2Vt68eV3OR06ePKnatWs7zwnr1Kmjxo0bq1GjRnrvvfcy9PHi4fpk09i4ceP0119/adu2bZo2bZp69erlMv2xxx5TtmzZNGPGDIWEhGjBggUuO9JLL72kH374QQsXLtSpU6f0zTff6PPPP1fJkiXl6empXbt2aezYsTp27JgOHTqkX3/91aULgRXVqVNHhQsX1siRI3Xs2DFt3rxZgYGBLieEuXPn1s2bN/XTTz/pzJkzWr58uRYvXqyYmBhJcl484IcfftCZM2e0fv16xcTEqEKFCklOS04d9erVU+7cuXXhwgVt3bpVISEhmj17tn788Ufn+1tNYus6YsQIlS5dWm+//bYOHjyooKAgjRs3Ti1atFCePHlUpUoVRUREaM6cOQoJCdHHH3/sEtLuJUeOHDp37lySV5kuWLCgnnrqKS1YsEDPPfdcaqxuhlK7dm0VLVpUI0aM0NGjR7VixQr973//u2u+pPbbVq1aKTIyUh988IFOnDihb7/9Vt9++63q1q2r559/XnFxcRo1apSOHTumDRs2aPr06erUqdND90WemJEjR+rw4cP63//+p8DAQHXt2jVZr+vVq5dmzJihDRs26NixYxo1apSio6P1/PPPO+eZMWOGgoKCtGfPHo0fP16tWrVy+YHzYVChQoUkj9fTpk3TwYMHNWbMGF29elUXL17UxYsXFRkZqVGjRik2NlZvvPGGLl265Jx269Ytk9cq4+vZs6cCAwO1evVqnT59WjNmzNDKlSud36V3Hn/v9Z2Kf3zwwQf6+++/tX37dk2bNk1dunRR165ddfjwYU2aNEknTpzQmjVr9PXXXzuHh0hyXgDp+PHj+uCDDxQVFZUpv9OSI6lzWyn+rgszZszQ1q1bdfDgQQ0fPlxS/A8yOXPmVLt27TRhwgT99ddf+uuvvzR+/Hjn9Hvty61atVJMTIzzfGfr1q16//33nd2eHyYvvfSSfvrpJy1cuFAnT57UwoUL9dNPPzm/A7t3767p06dr69atOnbsmN5//31VrFjxruEKQ4cO1f79++/qAZmRPBxt8umkW7duevXVVxUTE6MXXnhBL730ktasWeOc7uXlpbFjx2ry5Mlavny5GjdurO7du+v8+fOSpKpVq2rixImaMWOGJk6cqGLFiumDDz5QgwYNJEmTJ0/W+++/7/xFu2HDhnr33XfTezVTlbu7u2bOnKn3339fbdu2Vb58+fTqq6+qcePG+vTTTyXFjwkYOHCgxo4dq+joaPn4+Gj06NEaPny4zp07p0aNGun111/Xxx9/rAsXLqhkyZL69NNPVbZsWZUtWzbRaRcvXrxnHS1atJDdbtcff/yh119/XVL82Orhw4dr8uTJljzpSmpdfX19NXbsWL344ovKkSOHWrZsqTfeeENS/JjYoUOHau7cufr888/Vrl27+/qybt26tf73v/+pVatW+v333xOd77nnntNff/2lZ555JsXrmtF4eHho9uzZGjlypNq1a6cKFSqoS5cud7XeJrVPS9Ls2bM1fvx4LV26VEWLFtUHH3ygatWqSZLmzp2rcePGqU2bNsqbN6+6d++u/v37p/u6ZlQNGjRQ165dlT17dg0ZMkRt2rRJ1uteeuklRUREaPTo0QoPD1fVqlUVGBio/PnzO+dp27athg8fruvXr+v555/XiBEj0mgtMq4CBQokebxet26dLl26pBYtWri8buDAgVq3bp0k3dVVecKECXd1aYSrFi1a6PLly5oxY4YuXLigsmXL6rPPPnN2Hfz38Tepzwj/eO6559S/f3/Z7XZ16tRJAwYMkJubm7744gt9/PHHmj9/vooWLaqhQ4fqhRdecL6uQYMG2rlzp6ZNm6aKFStq4cKFD2Wgku59bturVy9duHBBr732mtzd3dWnTx/t3r3b2dtx6NChGj16tHr27CkvLy9169ZNkyZNkoeHxz3PD4sWLaq5c+dqwoQJatu2rXLlyqW2bdtqyJAhJm4Rc1SpUkUTJ07UtGnTNHHiRJUpU0ZTpkzR008/LUl6+eWXdePGDb3xxhuKjY1VnTp1NGrUqLuWU6JECfXq1UsTJ05U48aNM+RYfZuRkduVATx0ZsyYoaNHj2rKlClml4JMJCgoSN27d9e+ffvSZKxV+fLltWDBAtWuXTvVl20Fp06dUtOmTbVx40aXCx4BVnTmzBk988wz+vHHH1WqVKn7eu2wYcN0+/ZtTZw4MY2qy1wct/1yDJ25cuWKatWqpQ0bNqh48eL6+eefVatWLeeFGIODg9WlSxeXAAzciZZbABnCoUOHdODAAQUGBmry5MlmlwMgmcLCwvTbb7/Jw8ODsd0A7ovjgolvvfWWbDabpk6dqipVqjivEj5jxgz98ssv6tevnyIjI/XJJ5+oUaNGBFskikFYADKE/fv3a8yYMWrZsuVD2/oFWNHChQs1efJk9evXT9myZTO7HAAWMmrUKLm7u6tTp07q2LGj4uLi9NlnnzmnT5w4UWfPnlWbNm3Us2dPFS9e3DnuFkgI3ZIBAAAAAJZHyy0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj6slAwBggri4OC1dulRr1qzR8ePHFR0drVKlSum5555Tz5495enpaXaJAABYCheUAgAgnd2+fVv9+vXT/v379eqrr6pWrVry9PTU7t27NWXKFJUoUUILFiyQzWYzu1QAACyDllsAANLZ/PnzFRQUpJUrV6p8+fLO54sXLy4/Pz89++yz2rx5sxo0aGBekQAAWAxjbgEASEeGYejrr79WmzZtXIKtQ8mSJfXdd9+pfv36kqSdO3eqU6dO8vX11TPPPKNPP/1U0dHRzvnLly+vFStWqGvXrvL19VXz5s21dOlS5/Rhw4bp9ddfV0BAgJ544gl9/fXXkqRly5apWbNm8vX1VcuWLbV69eo0XnMAANIW4RYAgHR05swZhYaGqmbNmonOU6pUKdlsNh04cEC9e/dWkyZNtH79eo0bN04bN27UmDFjXOafOHGiunbtqtWrV+vJJ5/UmDFjdPbsWef077//Xk2aNNGyZcvUpEkTff3115o8ebKGDBmib7/9Vn369NH48eMJuAAAS6NbMgAA6ejSpUuSpDx58rg836pVK4WEhDgft2zZUlFRUapfv7569+4tKT70vvfee+rSpYuGDBmiggULSpLat2+vFi1aSJLefvttLV++XMHBwSpWrJgkqUCBAurevbtz2Z9//rkGDhyo5s2bS4pvLT537pw+//xztW3bNo3WHACAtEW4BQAgHeXOnVuSdP36dZfnP//8c8XGxkqShg4dqpiYGB04cECnTp2Sv7+/cz7HdSCPHTvmDLelS5d2Ts+VK5ckOZclxY/ldbhy5YrCwsL00UcfaeLEic7nb9++LbvdrpiYGGXNmjUV1hQAgPRFuAUAIB2VLFlS+fPn186dO52trZJUtGhR57+zZcsmSfLw8FCbNm308ssv37WcAgUKOP+dUBi982YIjuU5lilJ7777rqpXr37X67Jk4dQAAGBNjLkFACAdubu7q2vXrlq1apWOHTt21/SYmBhduXJFkvToo4/q2LFjKlWqlPO/K1eu6KOPPlJkZOQDvb+3t7cKFSqkM2fOuCx327ZtmjdvntzcODUAAFgT32AAAKSzvn37qlatWurcubMWLFigI0eOKCQkROvXr1f79u11/PhxPfHEE3r55ZcVHBysCRMm6NixY9qxY4eGDh2q8PBwl5bb+zVgwAAtXLhQS5cu1enTp7V+/Xp9+OGHKVomAABmo+8RAADpLEuWLJo5c6bWrl2rVatW6fPPP1dUVJSKFi2qOnXqaPr06c5xtF988YWmTp2qr7/+Wt7e3mrYsKHefvvtFL1/586dFRMTo3nz5mns2LEqVKiQXnnlFfXt2zcV1g4AAHPYjDsH5QAAAAAAYEF0SwYAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWN7/ATAotnxJZJxLAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAI5CAYAAAB6qc0fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB3k0lEQVR4nO3dd3gU5d7G8XsTQigJ0nsHA1ISgkpRuhRFkCIiLSBNQAXFo1JEQAE5HpAWQBQQNKD06rEjoBSDCBJ6CS1gCF1SIAmbef/Iu3tYSEIgZTLh+7kurovdmX32N7OT2bn3eWbGZhiGIQAAAAAALMzN7AIAAAAAAEgrwi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwBSFBgYqCpVqtzTv1WrVqXpPYODg51t3bx5M52WxDqioqJUr149ValSRQMHDpTdbr/rayIiIuTn56cqVapo+PDhmVBl1tKsWTNVqVJFy5cvz/D3OnPmjHP7PHXqVIa/3726fv26zpw5Y3YZsLirV6/qwoULptYQEBCgKlWqaOrUqama/0H/7gBAuAVwFyVKlFDt2rXv+q9IkSLO13h4eJhYccpuDevBwcFml5OkuXPn6sqVK6pVq5amTp0qd3f3u75mxowZunHjhho2bKjx48dnQpXIitavX69WrVpp+/btZpcCC1u4cKFatmypo0ePml0KANyTHGYXACBr69Spkzp16pTiPEePHlXXrl0lSb6+vmrVqlVmlJYtnT9/Xl988YXKly+vTz75RLlz577ra0JDQ7V69WrVrFlTM2bMUI4cD96ufeHChYqPj1fRokXNLsVUU6dOVUREhNllwOImTpxodgn3xdfXV99++60kPZD7QQCEWwBp9M8//+iVV15RZGSk8ufPr+nTpytnzpxml5WsAgUKqEKFCpKUquCY2YoWLaq//vrrnl5TqVIlHThwIGMKsoiyZcuaXQIAk+XOnVuVKlUyuwwAJiLcArhvhmFo2LBhOn36tNzc3DRp0iSVLFnS7LJS1KNHD/Xo0cPsMgAAAJDOCLcA7tu8efO0ceNGSdKgQYPUqFGjJOc7deqUFi1apODgYP3999+6fv26vLy8VKVKFbVp00bPP/98qs4rdTh06JAWLFig4OBgXbx4UXnz5lWNGjXUuXPnO4ZEr1q1SiNGjEhVu19++aXq1q2r4OBg9ezZU35+flq8eLGCgoK0Zs0anTp1Sh4eHqpevboCAgLUvHnzJNuJiIjQwoULtXnzZp09e1Zubm4qW7asWrRooZ49eypfvnx3vCY0NFTz5s1TSEiIzp49K3d3d5UpU0aNGzdWz549VahQoTteYxiG1q1bpzVr1ujIkSP6559/VKRIEdWrV08DBgxQ+fLlU7XcgYGBmjlzpnr27Kl+/fppypQp+u233xQdHa1SpUqpdevW6tWrl7y9vZN8/d69e/Xll1/qjz/+0MWLF5UnTx5VqVJF7dq1U4cOHe74bAMCArRjxw4tWLBAXl5e+uSTT7Rr1y7FxsaqQoUK6tWrl9q3by9JWr58ub7++msdP35c7u7u8vPz05AhQ1SrVi2XNps1a6azZ89q/PjxeuGFF1ymRUVF6YsvvtBPP/2kU6dOyTAMlSlTRi1atNBLL72U5OchSQcOHND8+fO1c+dOXblyReXKlVOXLl2S3c6rVKmSirUtdejQQRMmTFDTpk0VERGh4cOHq3fv3knO++6772rFihXq2rWrxo4dm2ybjs/QYdSoURo1apRee+01DR482Pn8xYsX9fnnn2vTpk3ObbNixYp69tln1b17d3l6eibZ7sCBA9WjRw/NnDlTGzdu1JUrV1SsWDE9++yzevXVV5UzZ04FBwfrs88+U0hIiGJjY1WpUiWXz9Jh+PDhWr16tUaMGKGGDRtq6tSp+uOPPxQXF6dy5cqpQ4cO6tKlyx21OPzxxx8KCgrSrl27dPXqVeXLl0+1atVSQECA6tevf8f8jm3jxx9/VFhYmObNm6d9+/YpISFBPj4+GjhwoJo0aaKbN29q4cKFWrNmjU6fPq3cuXPr8ccf19ChQ++5N/D8+fNavHixtm7dqtOnTys6Olp58+ZVxYoV1bJlS3Xr1k25cuW6pzYjIiI0f/58bd68WeHh4XrooYfUtGlTvfbaa5oyZYpWr16tiRMnqmPHji6v27Fjh5YvX67du3fr4sWLunnzpgoUKKBatWqpW7duLuvM8dk4OLZLR7uO7aF27dr6+uuv76jRse+UpMOHD9/R7tixY9WwYUPNmjVLW7du1eXLl1WwYEE1bNhQgwYNUunSpVO1Lq5fv66XX35ZO3bsUPHixZ2nctz6/vv3779jaPK9fHdIGbOvApCxCLcA7svOnTs1bdo0SdKTTz6p1157Lcn5fv75Zw0dOlRxcXHKkyePypQpI8MwdObMGQUHBzv/ffzxx6l638WLF2vChAmy2+3KkyePHn74YV29elVbtmzRli1b1KZNG/3nP/9xBqpChQqpdu3aybZ3/PhxXb16VR4eHi4XxZKk+Ph49e/fX9u3b1eBAgVUqVIlnThxQr///rt+//13jR071nmuscP27ds1ePBgRUZGysPDQ5UrV9bNmzd15MgRHTp0SCtWrNCnn37qEoR2796tPn36KCYmRvny5VOFChUUGxurI0eO6ODBg1q9erWWLl2qEiVKOF8THR2tIUOGaMuWLZKkkiVLysfHRydOnNCqVav0/fffa9GiRapevXqq1quUePDcqVMnnT9/XuXLl1fhwoV19OhRBQYG6ttvv9Xnn3+u4sWLu7xm7ty5mjJlihISEpw/WFy5ckU7duzQjh07tHbtWs2ePTvJYPz9999r5cqVypkzp8qXL6+///5bBw4c0LBhwxQTE6Ndu3Zp/fr1KlSokCpUqKCjR49q69at+uOPP7R8+XJVrVr1rssUGhqq/v37u/xgkCtXLh07dkyzZs3SmjVrNHfu3DvCy7p16zRy5EjFx8froYce0sMPP6yzZ8/qgw8+UJ06dZJ8r5S2s6tXr+r48eOSEj8rd3d3dejQQXPmzNHatWuTDLc3btzQ999/L0l3BJbbOS78tm/fPmdILFSokMs28+eff+qVV15xbu/ly5eXYRjav3+/9u3bp7Vr12revHl3/B1IiT9QtWvXTleuXFHlypXl7u6usLAwzZkzR2FhYXr88cf1/vvvK3fu3CpfvrzOnDnj/Cxv3LihLl263NHm4cOHNWPGDMXExOjhhx/WzZs3dfDgQR08eFA//PCDPv300zu2m8mTJ2vu3LmSpIceekg+Pj46f/68NmzYoA0bNqhfv356++23k1xHX3zxhRYvXqx8+fKpTJkyOnXqlHbv3q2BAwcqMDBQQUFBCg4OVrFixVShQgUdOXJEP/30k/744w+tW7dOxYoVS/EzcPjrr7/Uv39/Xbt2TZ6enipbtqxy5MihM2fOaPfu3dq9e7c2bNigL7/8MtU/6u3fv1/9+vXT5cuX5eHhIR8fH129elVLly7Vhg0bVKZMmSRf9/HHH+uzzz6TJBUsWFAVK1ZUVFSUM+z/+OOP+uCDD/Tiiy9KksqXL6/atWtr165dkiQfHx95eXkl+ePa/Thw4IAmT56smJgYlS1bVuXKldOxY8e0YsUK/fLLL1q1apXLNpuU2NhYDRo0SDt27FCpUqX0xRdfJLv8t7rX745bZca+CkA6MQDgHl26dMlo2LCh4ePjYzRq1Mi4dOlSkvNdvXrVePzxxw0fHx9jzJgxRkxMjHNadHS0MW7cOMPHx8fw8fExjhw54pz2+++/O5+Pj493Pr9582ajSpUqRvXq1Y0vvvjCuHnzpnPatm3bjPr16xs+Pj7G1KlTU7Ucv//+u1G9enXDx8fHWLFiRZLvX6tWLWPdunXOadeuXTN69epl+Pj4GHXq1HGp78yZM0atWrUMHx8fY+DAgcaFCxec006fPm28+OKLho+Pj9GkSRPj2rVrzmkvvPCC4ePjY4wbN86IjY11eU3Lli0NHx8f47333nOp/b333jN8fHyMunXrGlu3bnWp75VXXjF8fHyMxo0bu6yj5MyYMcO5vI8//rixbds257Rjx445a+jTp4/L677//nvn66ZNm+ZS+/bt240nnnjCuS5u1aNHD+frBg8e7FwXN27cMPr06WP4+PgYVatWNWrWrGmsWbPGZf02btzY8PHxMYYPH+7SZtOmTQ0fHx9j2bJlzueio6ONFi1aGD4+PsagQYOMc+fOOaedP3/eePnllw0fHx+jZcuWxvXr113We82aNQ0fHx9j4sSJzuW6efOm8emnnzpr9/HxMU6ePHnX9RsVFWW0b9/e8PHxMXr27OncZk6dOmVUqVLF8PHxMQ4fPnzH69avX2/4+PgYrVu3vut7pLQeDMMwzp07Z9SpU8fw8fExRo0aZfzzzz/OaadOnXJug926dXN53a3bxjPPPGOcOHHCOW369OnOaVWrVnVZVzExMUbfvn0NHx8fo2nTpi5tDhs2zPm6pk2bGgcOHHBO27Vrl3O7uX2b//rrrw0fHx/jscceM9auXet8PiEhwfjvf//r/Nu7fdkd68TxN+b4rP/55x+jbdu2zvrr1Klj/Prrr87XHTx40PD39zd8fHyMwMDAu657w0jcRpo3b274+PgYr7zyinH16lXntLi4OJftZ+PGjalq88aNG8ZTTz1l+Pj4GH379nXZ327cuNGoXbu2s82VK1c6pzn2Y1WrVjVWrFhh2O1257Tw8HDn3+ETTzzhMs0wDGd7t+5bDON/20OXLl2SrPXWfeetbv3MO3fubBw/ftw5bdeuXc71PH78eJfXOWqcMmWKYRiGERsb69xHNG/e3Dh79myy758e3x0Zsa8CkLG4FRCAe2IYht5++21FRETIw8ND06ZNU8GCBZOcd+fOnYqPj1eRIkU0atQolws45cmTR8OHD3feNujIkSN3fe8pU6bIMAy99dZb6tmzp8sv7PXr13de4XPBggW6cuVKim2FhobqtddeU3x8vPr166fnn38+yfmGDBmitm3bOh97e3s7e4auXr2qEydOOKd9+umniomJkY+Pj6ZPn67ChQs7p5UpU0affvqpihQpor///ltBQUHOaYcOHZIkPf/88y4X4ypTpoyGDRumpk2bqlSpUs7nz58/r2XLlkmSPvroIz3xxBMu9U2aNEn58uVTeHi4tm3bluJ6uN1HH33kMkyxUqVKmj17ttzc3LRlyxaXi1057j354osv6vXXX3epvV69es5hsr/88ot27tx5x3vlz59f//73v529c56ens4ezISEBPXr10/t2rVzzl+qVCnnlbv3799/12VZvny5Tp06perVqyswMNCl561IkSKaPn26SpUqpZMnT7rcm3nevHmKjY1VnTp1NHz4cOdyubu76+WXX75rL+qt7Ha73nzzTR04cEDly5d3uZp12bJl9dhjj0mS1q5de8drHcND7+X9kjN//nxdvXpVzZo107hx41yGYpctW1azZ8+Wl5eXdu7cqc2bNyfZxsSJE12Guvfv39/5N/joo4+6rKvcuXPr5ZdfliSdPXtW//zzzx3tubm5afbs2XrkkUecz/n7++ujjz6SlPj5Oa78HBcXp8DAQEnShx9+qOeee875GpvNptatWzv/LgMDA5O8x2nlypU1cuRI53DgfPnyqXv37pISt7d33nlHDRs2dM5ftWpV51DV1GxvUuLf8tWrV5UzZ06NHz9eDz30kHOah4eHXn75ZWcvY2r2eZK0cuVKhYWFqWTJkgoMDHTZ3zZp0kTjxo1L8nW//fabcubMqRYtWuj555+Xm9v/DvmKFy+u119/XVLiUPVLly6lqpa08vDw0MyZM50X9ZMSP3PHNu7oMU5KXFycXnvtNW3ZskXly5fXokWLUn2Nh7R+d2T0vgpA+iHcArgnn3zyiXMo7DvvvCN/f/9k533qqae0e/du/fzzz0neliE2Nlb58+eXlHgOVUrOnDmjgwcPSpLLge2tGjdurAIFCujGjRsp3ufz0qVLevnll3Xt2jU1b95c//rXv5Kdt2nTpnc8d+sQ1mvXrjn/v2nTJklS165dk7xi9EMPPeQM0T///LPz+XLlykmSxowZo+3btys+Pt45rVmzZpozZ44GDBjgfG7z5s0yDEMlS5ZU48aN73ifPHnyaMmSJdqyZYvLwfrdlCtXLtnlffzxxyVJGzZskCSdPHnSGex79eqVZHv+/v7O7cPxulvVrVtXefLkcXnu1hCf1LI5bvUTFRV11+VxrOPWrVsnOdQwV65czvDiOHdckjPcJRcqbx+KnpLx48dr06ZNyp8/vz799FOXsCPJuT2sX79eCQkJzufPnz+v7du3K0eOHC4HzffLsS6S+9spXLiwnnzySUmu68Ihf/788vPzc3kud+7czqCV1HnIt96WKanPq169ekkO12zQoIFKly6thIQEZy2O80Xz5s2rp556KslleO655+Tm5qaIiIgkrx7eqFEjl4Anpe/2JknVq1fXH3/8oT/++EMFChS4Y3pcXJxzG7jbPs/B8dm1b98+ySu8P/PMM0kOmX7rrbcUEhKiSZMmJdnuref83rhxI1W1pFWNGjWSHPZesWJFSVJkZGSSr7t586Zef/11bd68WWXLltWiRYtSPUw8Pb47MnpfBSD9cM4tgFQLDg529sY9/fTTzgt33E2uXLl06NAhHTp0SGFhYTp9+rSOHTumo0ePOoOcYRgptnH06FHn/1999dVk54uNjZUk5/mNt7tx44YGDRqkM2fOqFq1apo0adIdB7y3SuoA6taDQrvdLinxAMbRy1SjRo1k23OcA3trj+/bb7+tQYMGac+ePXrppZeUJ08ePf7443riiSfUpEmTOy4MderUKUkpX8Dofm6HUbNmzWSnValSRcHBwTp58qSk/63fu916o0aNGtq9e7fL8jrcfv6uJGdPvqQkRwTcy70rHT1jy5cvTzJcS4m9VtL/lufGjRsKDw+XJD388MNJvqZq1aqy2Wx33WY///xzffXVV/Lw8ND06dOTvMDX008/rXHjxikiIkK///67sxd+3bp1stvtatq0qcsIgPsRHR2ts2fPSpJmz56tL7/8Msn5HPMk9beT3HmQjh9x7vZZJbWufH19k625SpUqOnPmjHN7c/z9x8fHO3tbk+Lu7q6EhAQdP378jvYzenu7Va5cuXTy5Ent27dPp0+fVlhYmI4dO6bDhw8791G3/piREsd2nNx5mzabTdWqVUvy/sY2m01ubm7auXOnjh075tz/Hj582LkfuZda0iq5QOrYpybV4y5JixYtcgbwq1ev3lO96fHdkZnbDoC04S8PQKpcvHhR//rXv2S321WhQgVNmDAhVa/bvHmzpk2bdkdPStGiRfX000/r119/TXLI4u1u/UU/paFrSc3vkJCQoLffflt79uxRkSJF9Mknn9zxa/ztbj2ASYrjoD06Otr5nJeXV7LzO6bFxMTIMAzZbDY1atRIK1as0Ny5c7Vp0yZFR0dr8+bN2rx5syZOnKhHH31UH3zwgSpXriwp8eBO0l1rv1eOXvSkON7L0VPt6I1IaVklKW/evJJc14/D3e4zbLPZUpx+N44aT5486QxJyXFsL7dui8mt35w5cyp37tyKiYlJtr0ff/zR2WM2ZswY1atXL8n5cufOrdatW2v58uVau3atM9yuWbNGkpIdLn8vbu05Ss1Q2KT+du72WaX0A1Fybu/FvtXt25ujpri4uFT9/d86ouL2NpNzP8uQlD179mjy5MnasWOHy/MFChRQ48aNdeDAAZ05cybV7aXm7z2pv0PDMPTFF19o/vz5On/+vPN5m82mChUqqF27dkkOh89Id9ufJufGjRvy8fGRYRg6evSo3nvvPeeFsu4mPb47MnpfBSD9EG4B3FVCQoL+9a9/6cKFC8qdO7dmzJhx11AjSb///rsGDhyohIQE1apVS23btpWPj48qVarkvPpmaofNOg7s8ufPr+Dg4Ptajv/85z/68ccflStXLn3yySdJ/hp/vxwhTkp5GJojPOXJk8flgOiRRx7RlClTFB8frz179ig4OFjbtm3Trl279Oeff+qll17Sjz/+qDx58jgPtJIKjGmRUlhzLJPjc3Ms792G3DlCxq3rJ7Pkzp1bkZGRmjNnTpLDrZNy61DS5JbNMAzFxcUl20ZISIjefvttJSQkqE+fPnfcmuh2zz//vJYvX64ff/xR77//vo4fP66jR4+qQIECatKkSarqTsmtB+br16+Xj49PmttMD/eyvTmWoXr16i7nR2c1oaGh6tmzp27cuKHKlSvr+eefV9WqVVWpUiVnr2WXLl3uKdzmzp1b8fHxKf6tJbUvmDVrlvM85datW6tRo0aqXLmyKlasqLx58+rkyZP3HW6TG7WQ2qHW96pq1apauHChTp8+rS5dumjz5s1atWpVqs5HT4/vDgDWwTm3AO4qMDBQv//+uyTp/fffT/XB8dy5c5WQkKB69erpq6++Uo8ePVSnTh3nAWtcXNxdL/zk4LgAydWrV3XhwoVk59u5c6dCQ0PvOIds8eLFWrBggWw2mz766KMUh+DeDy8vL+c5Vvv27Ut2Psc0xxBVu92uU6dO6Y8//pCU2LPx2GOP6dVXX9XixYu1ePFi2Ww2XbhwwXlxKMdrbx1ud7sZM2aob9++LvesvJuU2nOcs+boPXacI3f9+nWFhoYm+zrH8jrOK85Mjm0mpeU6efKk9u7dq8uXL0tK7JV1nEvnWObbHT9+PNnhk2FhYRo4cKBu3Lihpk2bJntbmlv5+/urUqVKiomJ0datW/XTTz9JSjw/8H57um6VL18+59DmY8eOJTvf4cOHdfDgwVSNpEgPKX0ujousObY3x2d58uTJZNe9YRj6/fffdfLkyRR/fMhIX3zxhW7cuKGKFStqxYoV6tOnj5544gmX4bhJDR9OiWN/e+t9Y293+7T4+HjNnz9fUuJQ3KlTp6pDhw6qWbOm84emc+fO3VMdkpznrie3fm/tIU5PTZo0UYECBeTn56eAgABJiRc4S826TOt3BwBrIdwCSNHWrVs1Z84cSYk9DvdycRtH70TVqlWTvKDPmjVrnOfcJnfA6lCpUiVnQFq0aFGS8/z555/q3r27Wrdu7XJV302bNjmHUb/xxht6+umnU70M98LRO/j1118nefD3zz//OIebOi7Ac/ToUbVs2VK9evVK8sDL39/feTDqOM/McWGcs2fPJnnxkxs3bmjFihXasmXLXc8LvdW+ffucoeJWhw4dcg7nc1yAqUKFCs6Dxi+++CLJ9nbt2qWQkBCX5c1Mjs9jxYoVSR6w3rx5U6+88oo6derkvEKvJLVs2VKStHTpUuc51bdavnx5ku937do1vfzyy7p06ZKqVKmijz/+ONVDXW+90Jjj/OD7uUqyYzTA7Z+7owd40aJFSZ6vGBkZqV69eql9+/bJfp7p7ddff01ym9+4caPCw8OVM2dONWvWTJL0+OOPy9vbW9HR0cn23K5fv169evXSM888c1/BLT04zluuVKlSkkNZt27dqr///luSkty2ktKiRQtJicvnOC/0Vr/99pvzfR2uXLni7BlP7l7Xt27Ht+9/k9uOHCMbzpw5k+Q+zvHDTEZ64403VKpUKV27dk3vvffeXedPy3cHAOsh3AJIVkREhHN4Ze3atfXuu+/e0+sdvXv//e9/XXr3YmNjtWjRIo0fP975XGp+LXfcuuKzzz7T3LlzXQ6udu7c6Zxeq1Yt5zmOBw4c0NChQ2W32/Xiiy9q4MCB97QM96J///7Kmzevjhw5otdff93l9hphYWEaMGCALl68qGLFijmvMFy1alX5+Pg4bxlz60F5XFycpk6dqqioKOXJk8d525gyZco4b0/0zjvvaPfu3c7X/PPPP3rnnXcUERGhUqVKqXXr1qmu3zAMDRkyxKVH7dChQ3rttddkGIY6dOjgcvEox/peunSpZsyY4fJ5BAcHa8iQIZISh57feruizNK9e3cVKVJEp06d0qBBg5yhQpIuX76sN954Q6GhofLw8FCfPn2c0/r27av8+fNr//79GjFihHM4qGEY+uqrr5K8IFNcXJxeffVVHT9+XCVKlNDcuXPvaSh2+/btlSNHDn3//fc6fPiwqlevnuwFhFLiGIJ5e9h5+eWXlSdPHv355596++23nT3VjnlffvllXblyRd7e3ilesCk9xcTE6JVXXnFewEtK3G5GjBjhrNlx65U8efI4by00YcIErVy50iWk//zzzxozZoykxKsHly1bNlOW4XaOH3y2bt3qcvurmzdv6ptvvtHQoUOdz6W2h7BTp04qUaKEzpw5ozfffNN5Dq6UuN8bPnz4Ha8pWLCg8xz6hQsXuvTGX758WWPHjtU333yTbC2O7ejWvxkp8ZZPUuJ+ZurUqc5QfP36dX388cf69ddfU7VMaZEnTx7n7Y8cw5Pv5n6+OwBYE+fcAkjW8uXLnQHN0bOTGo0bN9bAgQP16quvatu2bbpw4YLatm2r8uXLK2fOnDp16pRiYmJUsGBBVahQQYcOHUpVT8uzzz6rkydPKjAwUJMnT9ann36q8uXL6/Lly86D+QoVKmj27NnO1wwbNkwxMTFyd3fXhQsX1LdvX8XGxibZa+Ko+36VKVNGM2bM0Ouvv65ffvlFjRs3VuXKlWW323Xs2DElJCSoZMmSmjlzpsvVNadOnaouXbpox44dat68uUqXLq3cuXPrzJkzunbtmtzd3fXBBx+4vGb06NEKDw/Xjh071KVLF5UrV0558uTRiRMndOPGDeXPn18zZsxwubLz3RQvXlxXrlxR27Zt9fDDD8swDB07dkyGYahevXp3/LjxzDPP6PTp05o6dapmzZqlL774QhUqVHD5POrUqaNJkyaZcsGVhx56SJ988okGDRqkbdu26amnnlLlypVls9l04sQJxcXFKUeOHJoyZYrLlaeLFCmiadOm6bXXXtPatWv1008/qVKlSjp37pwuXLigZs2aafPmzS7b0OLFi50XECpYsKBGjx6t69evu9zW6VZff/21y+NChQqpcePGaeq1laRq1arpyJEjmjdvnn799Ve1aNFCr7zyisqVK6dp06Zp6NCh+uabb/TDDz+ocuXKio+Pdw71zZMnjz777DPnaQMZrXz58jp48KCaN28uHx8fxcTEOC/81aZNG5fbX0mJPx6FhYVp2bJlGjlypCZNmqTSpUsrIiLCORy2du3aLj+aZbY+ffrom2++0ZUrV9S9e3eVL19eefPm1ZkzZ/TPP/8oT5488vf31+7du1Pdu+zl5aXp06erd+/e+vnnn/Xrr7/q4YcfVnR0tE6ePKlSpUqpcOHCunjxonOETI4cOfT666/r/fff144dO9S4cWOVL19ecXFxOnXqlG7evKlq1aopPDxcV65c0blz51x6eKtVq6Y//vhDH3zwgb7++mt169ZNnTp1ko+Pj9q2bav169fr888/19q1a1W8eHGdOnVKUVFReuONNzRt2rSMWLUunnzySXXo0EGrV6/WxIkT9eSTT6Z4a6D7+e4AYE2EWwDJunVIWkrnx93OMQSsRo0aWrt2rWbNmqXdu3fr9OnTypkzp8qWLasmTZqoZ8+e2rRpk0aOHKlNmzZp+PDhdw1Br776qho0aKCgoCDt3LlThw4dkoeHh6pVq6YWLVqoV69eLj1mjgut2O12/fLLL6mqOy0aNGig//73v1qwYIE2b96sEydOyMPDQ4888oiefvppdenSRfny5XN5TeXKlbV69WrNnz9f27dv199//y3DMFS0aFG1aNFCvXv3vuO2NF5eXlqwYIFWrVqlNWvW6MiRI/r7779VrFgxNW3aVP3790/1fSAdSpYsqYkTJ2ratGnatm2bbt68qZo1a+r5559Xp06dkry1xYABA1S/fn198cUXzs8jX758ql+/vtq3b++896hZatasqfXr1ysoKEi//PKL84cVKbG3tHfv3kn2kNavX1+rV6/WvHnztGXLFh0+fFjFixfX4MGDNWDAgDvu+XrrxX72799/X7V27NhRGzZsUM6cOdWmTZv7amPYsGG6fv26tm3bpuPHj7uMmGjcuLH++9//auHChfrtt9904sQJ2e12lSpVSk8++aT69OmjMmXK3Nf73o+aNWtq8uTJmjFjhv7880/lyJFDderUUdeuXZMccWCz2TRu3Di1atVKS5Ys0V9//aWDBw/K09NTtWrVUps2bfTiiy8meY/pzFKyZEmtW7dOs2fP1vbt2xUeHi53d3eVKFFCzz33nHr16qWzZ8+qV69eCg4OVkxMTKqueu7n56d169bpk08+0datW3XkyBEVLFhQ3bp10+DBg9W1a1ddvHjRZSh0t27dVKFCBc2dO1dHjx7V0aNH5eXlJT8/Pz377LPq3LmzRo0apTVr1mjjxo0u9w/+8MMPNXbsWOdtvG692vhHH30kf39/rVy5UsePH9fp06dVs2ZN5/nFmRFuJWn48OH67bffdPHixVRdPflevzsAWJPNuJcTsgAA2U5gYKBmzpyp2rVr39GjmN1s2LBBr7/+uhYuXOgc5p1VBAUFafz48Xr66ac1ffp0s8vJMMOHD9fq1avVtm1bTZ482exysoV69erpypUr+vrrr1W7dm2zywEA03DOLQDggRAXF6fRo0erbt26WS7YSv+7wE/nzp1NrgRZSWBgoJ599tlkeyZDQkJ05coVeXh4ZJnbPAGAWQi3AIAHwuHDh3Xx4kXnebBmD1yKiYnR4cOHderUKY0ePVqHDx+Wj4+PKRffQtZVrVo1HTt2TJ988onzdmAOhw8fdt5u6rnnnkvV/ccBIDvjnFsAwAOhWLFiypEjh4KDg9W6dWt5eXlp2bJlptUTFRWl5557zvnYzc1NY8aMMeXiW8i6mjVrpubNm+vnn39W7969Vbx4cRUpUkRXrlxx3m7t0Ucf1ciRI02uFADMR88tAOCBULRoUU2YMEGlSpVSeHh4ulxALC2KFCkiHx8f5cqVSz4+Ppo9e3aWHC4Nc9lsNud58Q0aNJC7u7sOHTqkGzduqE6dOho3bpy+/PJLem0BQFxQCgAAAACQDdBzCwAAAACwvGx5zu2VK9FKSKBDGgAAAACyCzc3mwoUSP6e1Nky3CYkGIRbAAAAAHiAMCwZAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4RbYWGRmpoKB5ioqKNLsUAAAAABmIcItsbcuWjQoLO60tWzaZXQoAAACADES4RbYVGRmpkJDdMgxDe/bsovcWAAAAyMYIt8i2tmzZKMMwJEmGYdB7CwAAAGRjhFtkW/v2hchut0uS7Ha79u7dY3JFAAAAADIK4RbZVo0avnJ3d5ckubu7q2ZNP5MrAgAAAJBRCLfItho0aCqbzSZJstlsatCgibkFAQAAAMgwhFtkW97e3vL19ZfNZpOfX215eXmbXRIAAACADJLD7AKAjNSgQVNdvHieXlsAAAAgm7MZjsvJZiOXLkUpISHbLRYAAAAAPLDc3GwqVMgr+emZWAsAAAAAABmCcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8nJkxpvEx8dr5MiROnv2rOLi4jRo0CCVLFlS48aNk7u7u3LmzKmPPvpIhQsX1vjx47Vr1y7lzZtXkjR79mx5e3tnRpkAAAAAAIvKlHC7bt065c+fX5MmTdKVK1fUoUMHlS5dWu+9954eeeQRLVmyRHPnztWIESO0f/9+zZs3TwULFsyM0gAAAAAA2UCmhNunn35arVq1cj52d3fXlClTVLRoUUmS3W6Xp6enEhISdOrUKY0ePVoXL15Up06d1KlTp8woEQAAAABgYZkSbh1DjKOiojRkyBC98cYbzmC7a9cuLVq0SIsXL1ZMTIx69Oih3r17y263q2fPnqpRo4aqVq2aGWUCAAAAACwqU8KtJIWHh+vVV19Vt27d1LZtW0nSt99+q08++USfffaZChYs6Ay0uXPnliTVq1dPhw4duudwW6iQV7rXDwAAAADIujIl3F68eFF9+vTR6NGjVb9+fUnS2rVrtXTpUgUFBSl//vySpJMnT2ro0KFavXq1EhIStGvXLnXo0OGe3+/SpSglJBjpuQgAAAAAABO5udlS7Mi0GYaR4Slw/Pjx+u6771SxYkVJiefYHj16VCVLllS+fPkkSY8//riGDBmiuXPn6vvvv5eHh4fatWunrl273vP7EW4BAAAAIHvJEuE2sxFuAQAAACB7uVu4dcvEWgAAAAAAyBCEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAGSac+fCNXnyeEVEhJtdCnDfIiMjFRQ0T1FRkWaXAuAWhFsAAJBp1q5drtjYWK1Zs8LsUoD7tmXLRoWFndaWLZvMLgXALQi3AAAgU5w7F66LFy9Iki5ePE/vLSwpMjJSISG7ZRiG9uzZRe8tkIXkMLsAIDkhIbu1Z8+uNLURHR0lScqb1yvN9fj51Zavr3+a2wGAB9XatctdHq9Zs0IDBgw2qRrg/mzZslGGYUiSDMPQli2b9PTTbU2uCoBEzy2yuaioSH5RBYAswtFr+7/H502qBLh/+/aFyG63S5Lsdrv27t1jckUAHOi5RZbl6+uf5p7SoKD5kqSAgL7pURIAIA0KFy7iEnALFy5qYjXA/alRw1d79uyS3W6Xu7u7atb0M7skAP+PnlsAAJAp2rV7weVx+/adTKoEuH8NGjSVzWaTJNlsNjVo0MTcggA4EW4BAECmKF68hAoXLiIpsde2WLESJlcE3Dtvb2/5+vrLZrPJz6+2vLy8zS4JwP8j3AIAgEzTrt0L8vT0pNcWltagQVOVKVOWXlsgi7EZjsu9ZSOXLkUpISHbLRbuA+fcAgAAANmDm5tNhQolfxcUem4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgeYRbAAAAAIDl5ciMN4mPj9fIkSN19uxZxcXFadCgQapcubKGDx8um82mhx9+WGPGjJGbm5uWLVumJUuWKEeOHBo0aJCaNm2aGSUCAAAAACwsU8LtunXrlD9/fk2aNElXrlxRhw4dVLVqVb3xxhuqW7euRo8erQ0bNqhWrVoKCgrSypUrFRsbq27duunJJ59Uzpw5M6NMAAAAAIBFZUq4ffrpp9WqVSvnY3d3d+3fv1916tSRJDVq1Ehbt26Vm5ub/P39lTNnTuXMmVNly5bVoUOH5OvrmxllAgAAAAAsKlPOuc2bN6+8vLwUFRWlIUOG6I033pBhGLLZbM7pkZGRioqKkre3t8vroqKiMqNEAMAD7ty5cE2ePF4REeFmlwIAQKaIjIxUUNA8RUVFml1KusiUnltJCg8P16uvvqpu3bqpbdu2mjRpknNadHS08uXLJy8vL0VHR7s8f2vYTa1ChbzSpWZYn4eHuySpSJF7344APFjmz5+l2NhYffPNKg0fPtzscgAAyHCbNn2vsLDT2rlzq1544QWzy0mzTAm3Fy9eVJ8+fTR69GjVr19fklStWjUFBwerbt26+vXXX1WvXj35+vpq2rRpio2NVVxcnEJDQ+Xj43PP73fpUpQSEoz0XgxYUHy8XZJ04UL2+DUKQMY4dy5c586d+///n9O+fUdUrFgJk6sCACDjREZGKjg4WIZhKDg4WI899qS8vLJ2h5Cbmy3FjsxMCbdz5szRtWvXNHv2bM2ePVuS9O6772r8+PGaMmWKKlasqFatWsnd3V0BAQHq1q2bDMPQ0KFD5enpmRkl3pOQkN3as2dXmtuJjk4ccp03b9p7mv38asvX1z/N7QDAg2jt2uUuj9esWaEBAwabVA0AWFt6HCtznJzxtmzZKMNI7BA0DENbtmzS00+3NbmqtMmUcDtq1CiNGjXqjucXLVp0x3OdO3dW586dM6Ms0znGtqfHHy0A4P5dvHjhtsfnTaoEACBxnJwZ9u0Lkd2eOMrRbrdr7949hNsHka+vf7r8+hMUNF+SFBDQN81tAQDuX+HCRVwCbuHCRU2sBgCsLT2OlTlOzng1avhqz55dstvtcnd3V82afmaXlGaZcrVkAACysnbtXC+i0b59J5MqAQAgczRo0NR59xqbzaYGDZqYW1A6INwCAB54xYuXUOHCRSQl9tpyMSkAQHbn7e0tX19/2Ww2+fnVzvIXk0oNwi0AAErsvfX09KTXFgDwwGjQoKnKlCmbLXptJc65BQBAUmLv7Vtv3XnxQwAAsitvb28FBPQzu4x0Q88tAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAYAGRkZEKCpqnqKhIs0vJtv78M1gTJrynXbt2mF1Ktnb8+DF9+OFonTgRanYpwH1jn4zs4ty5cE2ePF4REeFml5IuCLcAYAFbtmxUWNhpbdmyyexSsq3vv/9GkvTdd+tNriR7W7VqqQzD0MqVS8wuBbhv7JORXaxdu1yxsbFas2aF2aWkC8ItAGRxkZGRCgnZLcMwtGfPLnoKMsCffwa7PKb3NmMcP35MsbE3JEmxsTfovYUlsU9GdnHuXLguXrwgSbp48Xy26L3NYXYBAMwTErJbe/bsSnM70dFRkqS8eb3S3JafX235+vqnuZ3sZMuWjTIMQ5JkGIa2bNmkp59ua3JV2Yuj19bhu+/Wq3btOiZVk32tWrXU5fHKlUv01lvvmlRN1sM+2RrYJyO7WLt2ucvjNWtWaMCAwSZVkz7ouQWQZlFRkfxynYH27QuR3W6XJNntdu3du8fkioD74+i1Te4x0gf75IzFPhnZhaPX9n+Pz5tUSfqh5xZ4gPn6+qfLL/JBQfMlSQEBfdPcFu5Uo4av9uzZJbvdLnd3d9Ws6Wd2ScB98fTM5RJoPT1zmVhN1sM+2RrYJyO7KFy4iEvALVy4qInVpA96bgEgi2vQoKlsNpskyWazqUGDJuYWlA09/XQbl8fPPMMQw4zQseOLLo+ff76LSZUA9499MrKLdu1ecHncvn0nkypJP4RbAMjivL295evrL5vNJj+/2vLy8ja7pGzn0UfrujzmfNuMUbFiZWdvradnLlWoUMnkioB7xz4Z2UXx4iVUuHARSYm9tsWKlTC5orQj3AKABTRo0FRlypSlhyADOXpv6bXNWB07viibzUavLSyNfTKyi3btXpCnp2e26LWVOOcWACzB29tbAQH9zC4jW3v00bp39OAi/VWsWFkjR35gdhlAmrBPRnZRvHgJvfXWKLPLSDf03AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwvByZ+WZ79uzR5MmTFRQUpKFDh+rixYuSpLNnz8rPz09Tp07V+PHjtWvXLuXNm1eSNHv2bHl7e2dmmQAAAAAAi8m0cDt37lytW7dOuXPnliRNnTpVkvTPP/+oZ8+eGjFihCRp//79mjdvngoWLJhZpQEAAAAALC7ThiWXLVtWgYGBdzwfGBioHj16qGjRokpISNCpU6c0evRodenSRStWrMis8gAAAAAAFpZpPbetWrXSmTNnXJ67dOmStm/f7uy1jYmJUY8ePdS7d2/Z7Xb17NlTNWrUUNWqVe/pvQoV8kq3ujOSh4e7JKlIEYZdZxTWceZgPQNA1sE+GdkB2zHuR6aec3u777//Xm3atJG7e+LGmzt3bvXs2dM5dLlevXo6dOjQPYfbS5eilJBgpHu96S0+3i5JunAh0uRKsi/WceZgPQNA1sE+GdkB2zGS4uZmS7Ej09SrJW/fvl2NGjVyPj558qS6desmu92u+Ph47dq1S9WrVzexQgAAAACAFZgabk+cOKEyZco4H1eqVElt27ZV586dFRAQoHbt2unhhx82sUIAwIPi3LlwTZ48XhER4WaXAiCLY3+B7GL//hBNmPCeDhzYa3Yp6SJTw23p0qW1bNky5+P//ve/ypcvn8s8/fv318qVK7VkyRJ17do1M8sDADzA1q5drtjYWK1Zw8UMAaSM/QWyi3XrVkmS1q5daXIl6cPUnlsAALKCc+fCdfHiBUnSxYvn6Y0BkCz2F8gu9u8PUUJC4rnNCQn2bNF7a+oFpQAAyArWrl3u8njNmhUaMGCwSdVkTSEhu7Vnz640txMdHSVJyps3bXc28POrLV9f/zTXA9wr9hfILhy9tg5r165UtWo1TaomfRBuAQAPPEcvzP8enzepkuwvKirxyqdpDbeAWdhfILtw9Nom99iKCLcAgAde4cJFXA5YCxcuamI1WZOvr3+69JQGBc2XJAUE9E1zW4AZ2F8gu3Bzc3cJtG5u7iZWkz445xYA8MBr1+4Fl8ft23cyqRIAWR37C2QXzz3X0eVxu3bPm1RJ+iHcAgAeeMWLl1DhwkUkJfbCFCtWwuSKAGRV7C+QXVSv7uvsrXVzc7f8+bYS4RYAAEmJvTGenp70wgC4K/YXyC4cvbfZoddW4pxbAAAkJfbGvPXWKLPLAGAB7C+QXVSv7qvq1X3NLiPd0HMLAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AWMC5c+GaPHm8IiLCzS4FAB54x48f04cfjtaJE6FmlwLgFoRbALCAtWuXKzY2VmvWrDC7FAB44K1atVSGYWjlyiVmlwLgFoRbAMjizp0L18WLFyRJFy+ep/cWAEx0/PgxxcbekCTFxt6g9xbIQnKYXQAAIGVr1y53ebxmzQoNGDDYpGoA4MG2atVSl8crVy7RW2+9a1I1eFCFhOzWnj270txOdHSUJClvXq80t+XnV1u+vv5pbictCLcAkMU5em3/9/i8SZUAABy9tsk9BqwkKipSUvqE26yAcAsAWVzhwkVcAm7hwkVNrAYAHmyenrlcAq2nZy4Tq8GDytfXP116SYOC5kuSAgL6prmtrIBzbgEgi2vX7gWXx+3bdzKpEgBAx44vujx+/vkuJlUC4HaEWwDI4ooXL6HChYtISuy1LVashMkVAcCDq2LFys7eWk/PXKpQoZLJFQFwINwCgAW0a/eCPD096bUFgCygY8cXZbPZ6LUFshjOuQUACyhevITeemuU2WUAAJTYezty5AdmlwHgNvTcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAICk48eP6cMPR+vEiVCzSwEAAPeBcAsAgKRVq5bKMAytXLnE7FIAAMB9INwCAB54x48fU2zsDUlSbOwNem8BALCgHPcyc1RUlI4fPy4PDw+VKVNGXl5eGVUXLOzHH79VRES42WVIkrOOoKD5JlfyP8WKlVDLlq3NLgPALVatWuryeOXKJXrrrXdNqgZARgkJ2a09e3aluZ3o6ChJUt68aT8W9vOrLV9f/zS3kx44hksZx3BZX6rCrd1u18SJE7VkyRLZ7XYZhqGcOXOqc+fOGjlypNzc6ADG/0REhCvi79Mq7p3T7FLk5Z4gSbJFnjO5kkTnIuPMLgFAEhy9tsk9BoBbRUVFSkqfcJuVRESE6/z5MBUvbv5yeXsn5gs3tysmV5Lo3Lkos0tAKqQq3H7yySdav3693n33XT3++OOy2+3auXOnAgMDVbhwYQ0cODCj64TFFPfOqd51S5ldRpazIPisDLOLAHAHT89cLoHW0zOXidUAyCi+vv7p0kvq6E0MCOib5raymuLFvdSvX9boSc5K5s3brYQEs6vA3aSqy3XlypUaO3asunbtqsqVK6tKlSrq3r27xowZoxUrVqT6zfbs2aOAgABJ0v79+9WwYUMFBAQoICBA3377rSRp2bJl6tixozp37qyNGzfexyIBAHBvOnZ80eXx8893MakSAABwv1LVc3vlyhVVq1btjuerVaumiIiIVL3R3LlztW7dOuXOnVuSdODAAfXu3Vt9+vRxznPhwgUFBQVp5cqVio2NVbdu3fTkk08qZ07zh7cCALKvihUrO3tvPT1zqUKFSmaXBAAA7lGqem4rVaqkDRs23PH8Tz/9pPLly6fqjcqWLavAwEDn43379mnTpk3q3r27Ro4cqaioKIWEhMjf3185c+aUt7e3ypYtq0OHDqVuSQAASIOOHV+UzWaj1xYAAItKVc/tK6+8oiFDhujgwYPy908cg//nn3/q+++/10cffZSqN2rVqpXOnDnjfOzr66sXXnhBNWrU0CeffKJZs2apatWq8vb2ds6TN29eRUXd+8nbhQqZfxJ8anh4uEuSihTxvsuc1uLh4a6bZheRhXl4uGfLz1zKftsyHixFivirbl3OM8to7C8yHus442XXdezh4S673ewqsi6O4bK+VIXbp556SlOnTtXcuXP1008/ydPTU5UrV9ann36qBg0a3Ncbt2jRQvny5XP+f9y4cXrssccUHR3tnCc6Otol7KbWpUtRSkjI+pftiY9P3HtcuBBpciXpKz7eLpvZRWRh8fH2bPmZS9lvWwaQ/thfZDzWccbLrus4Pt4uboKSPI7hzOfmZkuxIzPV97lt2bKlWrZsmS5FSVLfvn313nvvydfXV9u3b1f16tXl6+uradOmKTY2VnFxcQoNDZWPj0+6vScAAAAAIHtKdbjdvXu3Fi1apCNHjsjNzU3VqlVTr169VLVq1ft647Fjx2rcuHHy8PBQ4cKFNW7cOHl5eSkgIEDdunWTYRgaOnSoPD0976t9AAAAAMCDI1Xh9qefftKQIUP06KOPqlGjRkpISNBff/2lTp06ad68eapXr16q3qx06dJatmyZJKl69epasmTJHfN07txZnTt3vodFAAAAAAA86FIVbqdPn65XX31Vr732msvzU6dO1aRJk7Ry5coMKQ4AAAAAgNRI1SnjYWFhatOmzR3Pd+jQQceOHUv3ogAAAAAAuBepCrf+/v76+eef73h+x44d8vX1TfeiAAAAAAC4F6kalvzkk08qMDBQe/fu1eOPP64cOXJo//79Wrt2rdq3b685c+Y45x04cGCGFQsAAAAAQFJSFW6//vprFSpUSHv37tXevXudzxcuXFhbtmxxPrbZbIRbAAAAAECmS1W4/eWXXzK6DgAAAAAA7luq73MrSVeuXFFcXNwdzxcrVizdCgIAAAAA4F6lKtz+9ttvGjFihC5duuTyvGEYstlsOnjwYIYUBwAAAABAaqQq3I4fP141atRQt27dlCtXroyuCQAAAACAe5KqcBsREaFPPvlEFStWzOh6AAAAAAC4Z6kKt3Xq1NHBgwezRbj98cdvFRERbnYZkuSsIyhovsmV/E+xYiXUsmVrs8sAgFQLCdmtPXt2pbmd6OgoSVLevF5pbsvPr7Z8ff3T3A6sISsdW0gcXwB4cKUq3L7//vvq3LmztmzZojJlysjNzc1lupVu/xMREa6z4eHKW8D8i2DZcuaVJF29kWByJYmir0SYXQIAmCYqKlJS+oRbPFgiIsJ1/u9wFc9XxOxSJEneOfJIktyibppcSaJz1y6YXQKAB0Sqwu1nn32mCxcuaNOmTcqdO7fLNCve2zZvgWLybR5gdhlZTsjPQWaXAAD3zNfXP116SR29XAEBfdPcFh48xfMVUZ96L5hdRpb0+e/LlTV+xgeQ3aUq3K5du1YTJ05Uhw4dMroeAAAAAADumdvdZ5Fy5cql2rVrZ3QtAAAAAADcl1SF2z59+mjWrFmKjY3N6HoAAAAAALhnqRqW/Pvvvys4OFjfffedihQpIg8PD5fpP/zwQ4YUBwAAAABAaqQq3NaqVUu1atXK4FIAAAAAALg/qQq3r732WkbXAQAAAADAfUvVObeSdOrUKY0ZM0YBAQGKiIjQ4sWLFRwcnJG1AQAAAACQKqkKt3v27FG7du0UFham3bt3Ky4uTseOHVOfPn20cePGjK4RAAAAAIAUpSrcTp48Wf3799fnn3/uvJjUmDFj1K9fPwUGBmZogQAAAAAA3E2qwu2BAwfUpk2bO57v1KmTjh8/nu5FAQAAAABwL1IVbnPnzq1Lly7d8fyJEyfk5eWV7kUBAAAAAHAvUhVu27Rpo4kTJyo0NFQ2m02xsbHavn27xo0bp1atWmV0jQAAAAAApChV4fbNN99UqVKl9OyzzyomJkZt27ZV7969VbNmTb355psZXSMAAAAAAClK1X1un3nmGa1YsUJvvvmmDhw4IA8PDz388MPKlSuXmjdvru3bt2d0nQAAAAAAJCvZcLt582bt3btXknT27FnNmzdPuXPndk4/ePCgTp48KbvdnvFVAgAAAACQgmTDbenSpfXhhx/KMAxJ0vfffy93d3fndJvNprx582rUqFEZXyUAAAAAAClINtxWqlRJP/zwgyQpICBAM2fO1EMPPZRphQFAdhASslt79uxKczvR0VGSpLx5036Fej+/2vL19U9zOwAAAFlJqs65DQoKyug6AAApiIqKlJQ+4RYAACA7SlW4BQDcH19f/3TpJQ0Kmi9JCgjom+a2AAAAsqNU3QoIAAAAAICsjHALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsL4fZBQC4dz/++K0iIsLNLsPJUUtQ0HyTK0lUrFgJtWzZ2uwyAAAAkIkIt4AFRUSE68y5MOUqnMfsUiRJRm6bJOnizUsmVyLduBhjdgkAAAAwAeEWsKhchfOoXIfqZpeR5Zxavd/sEgAAAGACzrkFAAAAAFge4RYAAAAAYHkMSwaAJHDRrrvjwl3WwLacMrZj4H+ioqIUHR2lefN2m11KlhMeHqW8eT3S3A775JSldZ9MuAWAJEREhOv82TAVz5vX7FIkSd62xIt2uV29bHIlic5FR5tdAlIpIiJc5/4OU6F8uc0uRZKU6/+PPOKjLppbiKRL166bXQKAB0xERLjCI8L1ULFiZpciSfL4/+OcGCWYXIn0T0REmtsg3AJAMornzat+vly0KynzQvZnga9BpFahfLn13BNVzS4jy1m37ZDZJQBZipeXl/Lli1e/fv5ml5LlzJu3WwkJXunS1kPFiqlhzx7p0lZ28tuXi9LcBufcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsL1Ovlrxnzx5NnjxZQUFBOnjwoMaNGyd3d3flzJlTH330kQoXLqzx48dr165dyvv/l6WePXu2vL29M7NMAAAAAIDFZFq4nTt3rtatW6fcuRPvszdhwgS99957euSRR7RkyRLNnTtXI0aM0P79+zVv3jwVLFgws0oDAAAAAFhcpg1LLlu2rAIDA52Pp0yZokceeUSSZLfb5enpqYSEBJ06dUqjR49Wly5dtGLFiswqDwAAAABgYZnWc9uqVSudOXPG+bho0aKSpF27dmnRokVavHixYmJi1KNHD/Xu3Vt2u109e/ZUjRo1VLXqvd14vlCh5G+w7OHhLt1IuL+FeAB4eLirSJG0DQP38HDXzXSqJztKr3XMSk5eeq1jezrVk12lx3rOSjw83CUpWy2TlLhc8WYXkYWl3/6CnXJK2F9Yg4eHu+x8+SUr3Y7h4skiyUnrOs7Uc25v9+233+qTTz7RZ599poIFCzoDrWPocr169XTo0KF7DreXLkUpIcFIclp8PH+xKYmPt+vChcg0t2FLp3qyo/Rax0heeq1jrriXsvRYz1mJ4+8qOy2TxP7ibthfZA72F9YQH2+XGxtzsjiGy3h3W8dubrYUOzJN23zXrl2rRYsWKSgoSGXKlJEknTx5Ut26dZPdbld8fLx27dql6tWrm1UiAAAAAMAiTOm5tdvtmjBhgkqUKKHBgwdLkh5//HENGTJEbdu2VefOneXh4aF27drp4YcfNqNEAAAAAICFZGq4LV26tJYtWyZJ2rFjR5Lz9O/fX/3798+wGqKiohQdGamQn4My7D2sKvpKhHKkw22XEtdxrBYEn02HqrKXc5GxymuLMrsMpEJUVJSio6M1L2S/2aVkSeHR0cqbI6fZZQBZQlRUlKKvXdPnvy83u5QsKfzaeeVVvjS18eOP3yoiIjydKko7Ry1BQfNNruR/ihUroZYtW5tdBmAqU8+5BQAAAO4mIiJc4eFns8ytIj09PSVJsbHXTa4k0eXLl80uAcgSHrhw6+XlpZs58si3eYDZpWQ5IT8HyStX2k/D9vLykrcRpd51S6VDVdnLguCzMrySPwkeWYeXl5fy3YxTP1/O+0/KvJD9SmBbBiT9//5CudSn3gtml5Ilff77ciV4pf2Qs2DBgnrmmWfSoaLs57vvvjO7BCBL4HpoAAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsLwcZhcAAHhw/fjjt4qICDe7DEly1hEUNN/kSv6nWLESatmytdllAADSSVRUlK5FR+q3LxeZXUqWczUiQgl5vdPUBuEWAGCaiIhwnQs/p4L5S5hdinLlTPxCjbtuM7mSRJevZo3QDwCAVRBuAQCmKpi/hNo0GWB2GVnON5s+lWSYXQYAIB15eXnJzSuPGvbsYXYpWc5vXy5SnjSeNcs5twAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAyyPcAgAAAAAsj3ALAAAAALA8wi0AAAAAwPIItwAAAAAAy8thdgEA7l1UVJRuRMXo1Or9ZpeS5dy4GKMoL890aetcdLTmhWSNdRwVFydJ8sqZ0+RKEp2LjlbR/AXNLgMAAMCJcAsASShWrIQkKcHkOhwiI8IlSXmySKAsmr+gcx0BAABkBYRbwIK8vLx0I1esynWobnYpWc6p1fvllcMrze20bNk6HapJP0FB8yVJAQF9Ta4EAAAga+KcWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5eUwuwAAAJBxoqKiFHUtRuu2HTK7lCzn0rUYeSkqXdo6d+2CPv99ebq0lVZRsdGSJC/PvCZXkujctQsq6lUiTW1ERUUpMvIffffdd+lUVfZy+fJleXs/ZHYZgOkItwAAAGlQrFhicEswuQ6HyOgYSVKeQlkj7BT1KuFcRwCQkQi3AABkY15eXvLUDT33RFWzS8ly1m07JA8vrzS307Jl63SoJv0EBc2XJAUE9DW5kvTj5eUlDw93PfPMM2aXkiV999138vTMbXYZgOk45xYAAAAAYHmEWwAAAACA5RFuAQAAAACWR7gFAAAAAFge4RYAAAAAYHmEWwAAAACA5RFuAQAAAACWx31uAQCmiYqKUmRklL7Z9KnZpWQ5l66Gy9ue9nuwAgCyln8iIvTbl4vMLkOSdCMqSpKUKx3u+Z1W/0REKE+xEmlqg3ALAAAAAJmgWBrDW3qLjI6WJBX0ymdyJVKeYiXSvH4ItwAA03h5eSmnu7faNBlgdilZzjebPlXO3IbZZQAA0lHLlq3NLsFFUNB8SVJAQF+TK0kfnHMLAAAAALA8wi0AAAAAwPIItwAAAAAAy8vUcLtnzx4FBARIkk6dOqWuXbuqW7duGjNmjBISEiRJy5YtU8eOHdW5c2dt3LgxM8sDAAAAAFhUpoXbuXPnatSoUYqNjZUkTZw4UW+88Ya++uorGYahDRs26MKFCwoKCtKSJUs0f/58TZkyRXFxcZlVIgAAAADAojIt3JYtW1aBgYHOx/v371edOnUkSY0aNdK2bdsUEhIif39/5cyZU97e3ipbtqwOHTqUWSUCAAAAACwq08Jtq1atlCPH/+48ZBiGbDabJClv3ryKjIxUVFSUvL29nfPkzZtXUf9/Y2EAAAAAAJJj2n1u3dz+l6ujo6OVL18+eXl5Kfr/byTseP7WsJtahQp5JTvNw8NdupFwz20+KDw83FWkyL2v89vbOBMZpwXBZ9OpqvsXFWuXJHl5uptcSaJzkXEqXTB91rFuplNR2VB6bMdZjYdH4jacHZcr7jr75OSk1z45Pp3qyY7YX1iDh4e7wsMv67vvvjO7FEnS9evXJUm5c+c2uZJEly9fVtmyZdNlf3H2bJTmzdudTpXdv6ioxFMTvbxymlxJonPnolSqVOFs9XclZb/9hWnhtlq1agoODlbdunX166+/ql69evL19dW0adMUGxuruLg4hYaGysfH557bvnQpSgkJSd/4Pj7entbSs7X4eLsuXIhMUxsFCxZVfLxdSX8CmSsqJlySlNe7uMmVJCrmnbh+0rqO2Y5Tlh7bcVbj+Myz53LZzC4jy0qPbZn9RcrYX1iD49giq7h69aokKX/+guYW8v9KlCiVLscXjvWckAV+c4yMTDyGy5OngMmVJCpatEC6rOOsxmr7Czc3W4odmaaF22HDhum9997TlClTVLFiRbVq1Uru7u4KCAhQt27dZBiGhg4dKk9PT7NKxH1q2bK12SU4BQXNlyQFBPQ1uRIAAHC/stKxhZR9jy+y0nrOrusYGStTw23p0qW1bNkySVKFChW0aNGiO+bp3LmzOnfunKF1RF+JUMjPQRn6HqkRdz3xfOKcuZP/9SEzRV+JUP4SJcwuAwAAAADumWk9t2YpVizrhLeIfxLPL85fIJ/JlSTKX6JEllo/AAAAAJBaD1y4ZbgFAAAAAGQ/mXYrIAAAAAAAMgrhFgAAAABgeYRbAAAAAIDlPXDn3AIAspbLV8P1zaZPzS5D128k3uMvd66scSP7y1fDVTx3+tyj+9K161q37VC6tJVWMbHxkqQ8nh4mV5K4XopnjRsWAADSAeEWAGCa/12h3TC1Dkm6ci0x3D5UIGukneK5i6fLFeyz2lXwb0SHS5IeKlTY5Eqk4l5Zb/0AAO4f4RYAYBquYJ/xstI6lrLvegYAmI9zbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYXg6zCwCA7CwkZLf27NmV5nYiIsIlSUFB89Pclp9fbfn6+qe5HQAAgKyEcAsAFuDl5W12CQAAAFka4RYAMpCvrz+9pAAAAJmAc24BAAAAAJZHuAUAC4iMjFRQ0DxFRUWaXQoAAECWRLgFAAvYsmWjwsJOa8uWTWaXAgAAkCURbgEgi4uMjFRIyG4ZhqE9e3bRewsAAJAELigFWNSNizE6tXq/2WVIkm7GxEuScuTxMLmSxPWi4oXMLiNdbdmyUYZhSJIMw9CWLZv09NNtTa4KAAAgayHcAhZUrFgJs0twEXE98R6shfNlgVBZvFCWWz9ptW9fiOx2uyTJbrdr7949hFsAAIDbEG4BC2rZsrXZJbgICpovSQoI6GtyJdlTjRq+2rNnl+x2u9zd3VWzpp/ZJQEAAGQ5nHMLAFlcgwZNZbPZJEk2m00NGjQxtyAAAIAsiHALAFmct7e3fH39ZbPZ5OdXW15e3maXBAAAkOUwLBkALKBBg6a6ePE8vbYAAADJINwCgAV4e3srIKCf2WUAAABkWQxLBgAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5Ocx881WrVmn16tWSpNjYWB08eFBLlizRwIEDVb58eUlS165d1bp1axOrBAAAQHYQErJbe/bsSnM7ERHhkqSgoPlpbsvPr7Z8ff3T3E5Wkh7rmXWM+2FquO3YsaM6duwoSXr//ff1/PPP68CBA+rdu7f69OljZmkAAABAkry8vM0uIdtjHeN+mBpuHfbu3atjx45pzJgxGjNmjE6cOKENGzaoXLlyGjlypLy8vMwuEQAAABbn6+tPD14mYD3DLFninNtPP/1Ur776qiTJ19dX77zzjhYvXqwyZcpo1qxZJlcHAAAAAMjqTO+5vXbtmo4fP6569epJklq0aKF8+fI5/z9u3Lh7brNQIWv09Hp4uEuSihRh2EVGYR1nDtYzsgO248zBes54rGMAqZXd9hemh9s//vhDTzzxhPNx37599d5778nX11fbt29X9erV77nNS5eilJBgpGeZGSI+3i5JunAh0uRKsi/WceZgPSM7YDvOHKznjMc6BrK/9L442pQp09LcVmZcuMvNzZZiR6bp4fbEiRMqXbq08/HYsWM1btw4eXh4qHDhwvfVcwsAAAAASFl2u3CX6eG2X79+Lo+rV6+uJUuWmFQNAAAAAGRtXLQraVniglIAAAAAAKQF4RYAAAAAYHmEWwAAAACA5Zl+zi0AAGmR3leMDAqan+a2MuOKkQAAwBXhFgAAZb8rRgIA8KAh3AIALI0rRgIAAIlzbgEAAAAA2QDhFgAAAABgeYRbAAAAAIDlEW4BAAAAAJZHuAUAAAAAWB7hFgAAAABgedwKCFlWSMhu7dmzK01tRESES5KCguanuR4/v9rcbgQAAADIogi3yNa8vLzNLgEAAABAJiDcIsvy9fWnpxQAAABAqnDOLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8nKYXQAAAACkkJDd2rNnV5rbiYgIlyQFBc1Pc1t+frXl6+uf5nYAIDMQbgEAALIRLy9vs0sAAFMQbgEAALIAX19/ekkBIA0It8ADjCFwAAAAyC64oBSANPPy8mYYHADggREZGamgoHmKioo0uxQAt6DnFniAMQQOAIB7t2XLRoWFndaWLZv09NNtzS4HwP+j5xYAAABIpcjISIWE7JZhGNqzZxe9t0AWQs/tfeA8RQAAgAfTli0bZRiGJMkwDHpvgSyEnlsTcZ4iAACAtezbFyK73S5Jstvt2rt3j8kVAXCg5/Y+cJ4iAADAg6lGDV/t2bNLdrtd7u7uqlnTz+ySAPw/em4BAACAVGrQoKlsNpskyWazqUGDJuYWBMCJcAsAAACkkre3t3x9/WWz2eTnV5tTzIAshGHJAAAAwD1o0KCpLl48T68tkMUQbgEAAIB74O3trYCAfmaXAeA2DEsGAAAAAFge4RYAAAAAYHk2w3EX6mzk0qUoJSRku8UCAMA0ISG7tWfPrjS3ExERLkkqVqxEmtrx86vNbfkA4AHj5mZToUJeyU7nnFsAAJBpuLIsACCj0HMLAAAAAMjy7tZzyzm3AAAAAADLI9wCAAAAACyPcAsAAAAAsDzCLQAAAADA8gi3AAAAAADLI9wCAAAAACyPcAsAAAAAsLwcZhfQvn17eXsn3tC9dOnSGjhwoIYPHy6bzaaHH35YY8aMkZsbGRwAAAAAkDxTw21sbKwkKSgoyPncwIED9cYbb6hu3boaPXq0NmzYoBYtWphVIgAAAADAAkztEj106JCuX7+uPn36qGfPnvrrr7+0f/9+1alTR5LUqFEjbdu2zcwSAQAAAAAWYGrPba5cudS3b1+98MILOnnypPr37y/DMGSz2SRJefPmVWRk5D23W6iQV3qXCgAAAADIwkwNtxUqVFC5cuVks9lUoUIF5c+fX/v373dOj46OVr58+e653UuXopSQYKRnqQAAAAAAE7m52VLsyDR1WPKKFSv073//W5IUERGhqKgoPfnkkwoODpYk/frrr3rsscfMLBEAAAAAYAE2wzBM6+KMi4vTiBEj9Pfff8tms+mtt95SgQIF9N577yk+Pl4VK1bU+PHj5e7ufk/t0nMLAAAAANnL3XpuTQ23GYVwCwAAAADZS5YelgwAAAAAQHog3AIAAAAALI9wCwAAAACwPMItAAAAAMDyTL3PbUZxc7OZXQIAAAAAIB3dLedly6slAwAAAAAeLAxLBgAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuEWAAAAAGB5hFsAAAAAgOURbgEAAAAAlke4BQAAAABYHuE2jc6cOaMqVaro1KlTd0xbtWqVGjVqZEJV1pfSek0vwcHBqlKlim7evJmmdvic7+7SpUv69ttvzS4jS5o6daoCAgLYju5Teu2DAwMD1bVr1/Qu74GRGfts3L972Qen13cjAOsLCAjQ1KlTzS7jnuQwuwDALP7+/tqyZYty5ODPIKNNnjxZ8fHxat26tdmlZFmtW7dWkyZNzC4jW2GdZp4SJUpoy5YtKliwoNmlIAnsgwE8KDiqxwMrZ86cKlKkiNllPBAMwzC7hCwvV65cypUrl9llZCus08zj7u7O/jQLYx8M4EHBsOR08uOPP6px48aqXbu2xo8ff8dwnqSG+QwfPlxvvfWW8/HPP/+sZ599Vn5+furQoYN+/fVX57TDhw+re/fuqlWrlp588kn9+9//zjZDhsLCwjRgwAD5+/urUaNGmjNnzh3zhIaGql+/fvL391fNmjXVtWtXHT161Dl9+vTpatiwoWrWrKkXX3xRu3fvvuu02z+TlOrYvXu3unXrJj8/P9WqVUt9+/ZVRERERq2SDJXccp47d06vv/666tSpo7p16+qDDz5QbGyspKSHd946VGX48OEaP3683nzzTdWqVUutWrXSqlWrJCUO91y9erXWr1+vZs2aSZKqVKmiadOmqV69enrppZf0zDPPaO7cuS7td+7cWQsWLMjQdWGGY8eOqWvXrvLz81Pv3r119epVSXeu45S26QMHDqhHjx7y8/PTU089pRUrVjinhYaGqm/fvqpdu7YaNGigwMBAJSQkZNrymeWXX35RixYt5OvrqwEDBujKlSsu6zQ4OFhPPvmkFi9erLp166p+/fqaOXOmSxs3b97U+PHj9eijj6p+/fqaN2+ec1pCQoLmzZun5s2by9fXVz169NChQ4ec06tUqaJly5apRYsW8vf315tvvqmoqKjMWfgs4NZhySntr4cPH64qVarc8W/Hjh0KCAhIctrZs2dNXjpzONbphg0b1KxZM/n7++vf//63Dh8+rI4dO6pWrVoaOHCgYmJiJElLly7VU089JX9/f3Xt2lUhISGSkt4H3+079UHmWO/r1q1To0aN9Nhjj+mDDz5QfHy8pMTjga5du6pWrVpq1qyZFi9e7Hzt8OHD9f7772vQoEHy9fVVu3bttHPnTrMWxRSO9Tdr1iw9/vjjGjFiRIrHtwkJCZo8ebLq1q2runXravbs2WrRooWCg4MlSTdu3NC7776rRx99VA0bNtTy5ctVrVo1nTlzRtLdt+WjR4+qZ8+e8vX1VYsWLfT5559n+x97kvoMNm7cqA4dOsjX11fPPPOMvvvuO+f8drtdM2bMUMOGDVW7dm0NGjRI58+fv6Pds2fPqkGDBvroo48yc3HuGeE2nSxfvlxTpkzRnDlz9PPPPyswMPCeXn/o0CG9/fbb6t+/v9avX6/OnTvrtdde08GDByVJb7/9tipWrKj169dr2rRpWrt2rcsBrVXFxcWpb9++ypEjh5YuXaoJEyZo3rx5Wr9+vXMewzD0yiuvqGTJklq7dq2WLFmihIQE/ec//5Ek/fTTT1q8eLEmT56sb7/9VtWqVdOQIUOUkJCQ4rTU1LFu3TpFRUVpwIABeuKJJ/TNN99o/vz5OnPmjD755JNMXVfpIbnlXL16tXr16qWYmBh9+eWXmj59un799Vf9+9//TnXbS5Ys0SOPPKJVq1apQYMGGjt2rK5evao+ffromWeeUatWrVy22Q0bNuirr77Su+++q2effdZlR3v27Fnt3btXzzzzTLouv9ni4uL08ssvq3Tp0lq1apWaN2+u5cuX3zFfStvt5cuX9dJLL6lixYpavXq1hg4dqrFjx2rnzp26fPmyunXrpqJFi2r58uUaO3asFi9erM8//9yEpc1cq1at0scff6ygoCAdOHBAn3322R3zXL16VStXrtTnn3+ucePGacGCBfrqq6+c0x1hYPXq1RowYIAmTZqkw4cPS5JmzZqlzz//XCNGjNDq1atVunRp9evXzyXAzpgxQyNHjtSXX36po0ePatSoURm81FnP3fbX7777rrZs2eL816xZM9WqVUv+/v4KDAx0Pv/rr7+qRo0aatWqlUqVKmXyUplr7ty5mj17tsaOHasFCxZoyJAhevvttzV37lz98ccfWrlypX755RdNnz7duX02atRIvXr10vnz5+/YB9/tM0KiWbNmacqUKZo1a5Z+/vlnTZs2TaGhoerVq5cef/xxrV69WoMHD9akSZNcvr+WL1+uSpUqafXq1apbt65efvllXbx40cQlMcfOnTu1cuVK9erVK8Xj208//VRr1qzR5MmTtWDBAm3atElhYWHOdsaPH68///xT8+bN09SpUzVv3jzZ7XZJd9/f3LhxQ/369VOtWrW0bt06jRo1Sl988YUWLVqU+SvEBI7PoFatWho8eLDatWuntWvX6sUXX9Rbb73l8gPYsmXLNH78eC1fvlyxsbEaNmyYS1tXrlxRv3791KhRozumZTkG0iQsLMzw8fExNmzY4Hxu1apVRp06dYyVK1caDRs2NAzDMH7//XfDx8fHiI+Pd843bNgw41//+pdhGIbx1ltvGePGjXNpe/jw4caIESMMwzCM2rVrGx9//LFx8+ZNwzAMY+/evUZYWFiGLltm2Lhxo+Hn52dcu3bN+dzatWuNBQsWGD4+PsbJkyeN6Oho47PPPjOioqKc83z99ddGkyZNDMMwjAULFhj169c3Tp8+bRiGYURGRhrbtm0z4uPjU5x262eSXB0//fSTcf78eWPevHlGQkKCc9rkyZON7t27G4ZhuHzOWV1yy7l69WrD19fXuHLlivP5zZs3G4888ohx7dq1JJexR48expQpUwzDSNyWO3To4JwWGRlp+Pj4GDt27HBOd2zrhmEYPj4+RlBQkPPxyZMnDR8fH+fnNHfuXKNHjx7pt+BZxMaNG41atWq5bMuDBw82evTo4bKOU9puFy1aZDRp0sS5LzAMwwgKCjKCg4ONL774wmjYsKERFxfnnPbVV18ZdevWzaQlzHyOffCmTZucz02YMMF46aWXktwH79+/3znf9OnTjeeee84wDMOYMWOG8eSTTxp2u905/bHHHjPWrl1rJCQkGHXq1DEWL17snBYXF2c0btzYWLRokWEYidv0ggULnNO3b99uVK1a1eVvKjtzfA4HDx5McX99q6+++sqoU6eO8ffff98xbdKkSUaLFi2MyMjIDK07K0tq265Tp44xffp05+OBAwcaY8eONbp27eqy/RlG4j565syZhmG47oPv9p2a1PHKg8Sx3n/88UfncytWrDDq1KljfPjhh0anTp1c5p80aZLRsWNHwzAS13Pbtm2d0+x2u9GsWbM7PpvszLH+fvnlF8Mw7n5826BBA2PJkiXOaaGhoYaPj4/x+++/G1FRUUb16tWN3377zTn9119/NXx8fIywsLC7bsvLli1z+TwMI/EY/amnnkrfhc5ibv8MXn31VeP11193meeNN94wBg8ebCQkJBj16tUzli1b5px26tQp4+OPPzbsdrvRo0cPY+LEicaLL75oDB482OXYI6vinNt0UrNmTef/q1WrpqtXr+ry5cupfn1oaKiOHDmilStXOp+Lj4+Xr6+vJOnNN9/U+PHjtXTpUjVq1EjPPvusatSokX4LYJJjx46pbNmy8vb2dj733HPP6cyZM5o4caIkKU+ePOrWrZvWrl2rffv26fjx4zpw4IDy588vSWrbtq1WrVqlFi1aqGbNmmrWrJk6deqkHDlypDgtNXU4dOjQQQsXLtTBgwd17NgxHT582PnZWElyy/nZZ5+pbNmyznUqSbVr15bdbtfJkydT1XaZMmWc//fy8pKkFIfO39obU65cOdWsWVPfffedXn75ZX377bfq3LlzKpfKOo4dO6YyZcoob968zudq1Kih3377zWW+lLbbY8eOqWrVqnJ3d3fO36NHD0nSf//7X1WrVk0eHh7Oaf7+/rpy5YouX76crS/2c+v25+3t7RxSfytPT09Vq1bN+bhGjRouPbylSpWSm9v/BjQ52rl06ZKuXr0qPz8/5zQPDw/VqFFDoaGhzuf8/f1d2k5ISNCJEydcns/ucufOneL+2iEkJEQTJ05UYGCgSpQo4TLt559/VlBQkJYsWeLclzzISpcu7fy/p6enSpYs6XycK1cuxcXFKTQ0VFOmTNH06dOd0+Li4lS8ePE72rvbdyoS3f73fPXqVR04cMBlP+CY79ahybe+zs3NTdWqVdPx48czvuAsxvEdn9Lx7eXLl3X+/HmXY+iKFSvqoYcekiQdP35c8fHxLtNvXb9325aPHz+uY8eOubwmISFBcXFxiouLU86cOTNk2bOKWz+D24+p/P39tWzZMufxQfXq1Z3TypYtqzfffNP5ePHixYqPj1ePHj1cjj2yKsJtOrn1gMj4/7H8tx5g2my2O15z64G/3W5X37591bFjR5d5HH943bt3V9OmTbVhwwZt2rRJr7zyigYNGqTBgwen63JktlvXUXKio6PVqVMnPfTQQ2revLnatGmj48ePOw9KCxUqpFWrVmn79u3avHmzli5dqsWLF2vlypUqVqxYstNSW0dERISef/55PfLII2rQoIE6d+6sTZs26c8//0zbwpsgueX09PS84znHsJ+EhIS7br/JtW2kcF7L7e/Zpk0brV+/Xs8884yOHDmiVq1aJftaK7t9nSR1te6UtumUttWkPkfHEPzsft7t7V+4SW17t8+TkJDgsu++9f+3Smq9Sol/I46/k9vbd6zv5NrMrmJjY1PcX0uJw9tef/119e7dW40bN3Z5/alTpzR8+HC9++67euSRRzK7/Czp9n1EUtuU3W7XsGHD1KBBA5fn8+TJc8e8d/tORaKk/p6TkpCQ4LIfuP3zstvtSX6HZneO/WZKx7eOdXX7/trxOKnpt/7/btvyzZs3VadOHb3//vt31Pcg3CnD8Rkkd2xgt9tTdRzu4+OjQYMGaciQIc7j4azswfrWzUBHjhxx/j8kJERFihRx6R1zbDy3np/lOBlekipUqKCwsDCVK1fO+W/t2rX66aefFBsbq/Hjx8tmsykgIEDz58/Xa6+9li3uG1q+fHmFhYXdcd7arRd62bFjh86dO6egoCD169dPTzzxhP7++2/nDm7Tpk1aunSpGjZsqFGjRun7779XdHS0/vzzzxSnpaaO4cOH66efflLevHk1d+5c9erVS4899pjCwsIseUGC5JZz7ty5On36tPPiRpL0119/yd3dXWXLlpWHh4eio6Ody2wYhsv2ezep+WJv3bq1Dh48qBUrVuiJJ55QgQIFUr9gFvHwww/r9OnT+ueff5zPHThw4I75Utpuy5Urp8OHD7scbI0YMULTp09XpUqVdODAAeeFT6TEi5/kz58/W/faplZMTIxOnz7tfLx3715VqVLlrq/z9vZWkSJFtGfPHudz8fHx2r9/vypUqOB8znEOmSTt27dPHh4eqlixYjpVbw13218nJCTorbfeUunSpTVkyBCX116/fl2DBw9W06ZNs+XIjYxUoUIFnTt3zuUY4vPPP9eOHTskue6D7/YZIdGtF4zbt2+fChcurFq1arnsB6TEfWxy+wG73a5Dhw6laj+TXaV0fJsvXz4VLVpU+/fvd84fFhama9euSZLz+OPW6fv27XP+/27bcoUKFXTy5EmVKlXK+d4HDx7U3LlzH6gfHitVqpTsduvt7a2CBQu6HIucPHlSTzzxhPOYsEGDBmrevLmaNWum999/P8vvKx6cTzaDjR8/Xn/99Ze2bdumGTNmqE+fPi7TH374YeXKlUszZ85UWFiYFixY4LIhvfTSS/r++++1cOFCnTp1Sl9//bXmzJmjsmXLytPTU7t27dK4ceMUGhqqw4cP69dff3UZQmBVDRo0UPHixTVq1CiFhoZq8+bNCgoKcjkgzJ8/v65fv66ffvpJZ86c0fLly7V48WLFxcVJkvPiAd9//73OnDmj9evXKy4uTlWrVk1xWmrqaNSokfLnz6/z589r69atCgsL02effaYff/zR+f5Wktxyjhw5UuXLl9c777yjQ4cOKTg4WOPHj1fr1q1VoEAB1axZU1FRUZo7d67CwsL0n//8xyWg3U2ePHn0999/p3iF6aJFi+rxxx/XggUL9Oyzz6bH4mY5TzzxhEqWLKmRI0fq2LFjWrFihX744Yc75ktpu33uuecUHR2tDz/8UCdOnNA333yjb775Rg0bNlSbNm2UkJCg0aNHKzQ0VBs2bFBgYKC6dOnyQH2Rp2TUqFE6cuSIfvjhBwUFBal79+6pel2fPn00c+ZMbdiwQaGhoRo9erRiY2PVpk0b5zwzZ85UcHCw9uzZowkTJui5555z+ZHzQVC1atUU99czZszQoUOHNHbsWF25ckUXLlzQhQsXFB0drdGjRys+Pl7/+te/dPHiRee0GzdumLxUWV/v3r0VFBSk1atX6/Tp05o5c6ZWrlzp/C69dR98t+9UJPrwww+1d+9ebd++XTNmzFC3bt3UvXt3HTlyRFOmTNGJEye0Zs0affXVV85TQyQ5L350/Phxffjhh4qJicm232mpkdLxrZR454WZM2dq69atOnTokEaMGCEp8QeZvHnzqmPHjpo4caL++usv/fXXX5owYYJz+t225eeee05xcXHOY56tW7fqgw8+cA57flC89NJL+umnn7Rw4UKdPHlSCxcu1E8//eT8/uvZs6cCAwO1detWhYaG6oMPPlC1atXuOFVh2LBhOnDgwB2jH7Oa7N8nn0l69OihV199VXFxcXrhhRf00ksvac2aNc7pXl5eGjdunKZOnarly5erefPm6tmzp86dOydJqlWrliZPnqyZM2dq8uTJKlWqlD788EM1adJEkjR16lR98MEHzl+zmzZtqvfeey+zFzPdubu7a/bs2frggw/UoUMHFSpUSK+++qqaN2+ujz/+WFLieQGvvfaaxo0bp9jYWPn4+GjMmDEaMWKE/v77bzVr1kxvvPGG/vOf/+j8+fMqW7asPv74Y1WsWFEVK1ZMdtqFCxfuWkfr1q1lt9v1xx9/6I033pCUeH71iBEjNHXqVMsddKW0nL6+vho3bpxefPFF5cmTR23bttW//vUvSYnnxA4bNkzz5s3TnDlz1LFjx3v6sm7Xrp1++OEHPffcc/r999+Tne/ZZ5/VX3/9paeeeirNy5oVeXh46LPPPtOoUaPUsWNHVa1aVd26dbuj9zalbVqSPvvsM02YMEFLly5VyZIl9eGHH6p27dqSpHnz5mn8+PFq3769ChYsqJ49e2rgwIGZvqxZVZMmTdS9e3flzp1bQ4cOVfv27VP1updeeklRUVEaM2aMIiMjVatWLQUFBalw4cLOeTp06KARI0bon3/+UZs2bTRy5MgMWoqsq0iRIinur9etW6eLFy+qdevWLq977bXXtG7dOkm6Y6jyxIkT7xjSCFetW7fWpUuXNHPmTJ0/f14VK1bUrFmznMMHb98Hp/QZIdGzzz6rgQMHym63q0uXLho0aJDc3Nz06aef6j//+Y8+//xzlSxZUsOGDdMLL7zgfF2TJk20c+dOzZgxQ9WqVdPChQsfuDB1q7sd3/bp00fnz5/X66+/Lnd3d/Xr10+7d+92jngcNmyYxowZo969e8vLy0s9evTQlClT5OHhcdfjw5IlS2revHmaOHGiOnTooHz58qlDhw4aOnSoiWsk89WsWVOTJ0/WjBkzNHnyZFWoUEHTpk3Tk08+KUnq37+/rl27pn/961+Kj49XgwYNNHr06DvaKVOmjPr06aPJkyerefPmWfY8fZuR1fuWATwwZs6cqWPHjmnatGlml4JsJjg4WD179tT+/fsz5FyrKlWqaMGCBXriiSfSvW0rOHXqlFq2bKmNGze6XPAIsJozZ87oqaee0o8//qhy5crd02uHDx+umzdvavLkyRlUXfbjuO2X49SZy5cvq379+tqwYYNKly6tn3/+WfXr13deiDEkJETdunVzCcDArei5BWC6w4cP6+DBgwoKCtLUqVPNLgfAPYiIiNBvv/0mDw8Pzu0GcE8cF0x8++23ZbPZNH36dNWsWdN5lfCZM2fql19+0YABAxQdHa1JkyapWbNmBFski5OwAJjuwIEDGjt2rNq2bfvA9nwBVrVw4UJNnTpVAwYMUK5cucwuB4CFjB49Wu7u7urSpYs6d+6shIQEzZo1yzl98uTJOnv2rNq3b6/evXurdOnSzvNugaQwLBkAAAAAYHn03AIAAAAALI9wCwAAAACwPMItAAAAAMDyuFoyAAAmSEhI0NKlS7VmzRodP35csbGxKleunJ599ln17t1bnp6eZpcIAIClcEEpAAAy2c2bNzVgwAAdOHBAr776qurXry9PT0/t3r1b06ZNU5kyZbRgwQLZbDazSwUAwDLouQUAIJN9/vnnCg4O1sqVK1WlShXn86VLl5afn5+eeeYZbd68WU2aNDGvSAAALIZzbgEAyESGYeirr75S+/btXYKtQ9myZfXtt9+qcePGkqSdO3eqS5cu8vX11VNPPaWPP/5YsbGxzvmrVKmiFStWqHv37vL19dXTTz+tpUuXOqcPHz5cb7zxhgICAvToo4/qq6++kiQtW7ZMrVq1kq+vr9q2bavVq1dn8JIDAJCxCLcAAGSiM2fOKDw8XPXq1Ut2nnLlyslms+ngwYPq27evWrRoofXr12v8+PHauHGjxo4d6zL/5MmT1b17d61evVqPPfaYxo4dq7Nnzzqnf/fdd2rRooWWLVumFi1a6KuvvtLUqVM1dOhQffPNN+rXr58mTJhAwAUAWBrDkgEAyEQXL16UJBUoUMDl+eeee05hYWHOx23btlVMTIwaN26svn37SkoMve+//766deumoUOHqmjRopKk559/Xq1bt5YkvfPOO1q+fLlCQkJUqlQpSVKRIkXUs2dPZ9tz5szRa6+9pqefflpSYm/x33//rTlz5qhDhw4ZtOQAAGQswi0AAJkof/78kqR//vnH5fk5c+YoPj5ekjRs2DDFxcXp4MGDOnXqlPz9/Z3zOa4DGRoa6gy35cuXd07Ply+fJDnbkhLP5XW4fPmyIiIi9NFHH2ny5MnO52/evCm73a64uDjlzJkzHZYUAIDMRbgFACATlS1bVoULF9bOnTudva2SVLJkSef/c+XKJUny8PBQ+/bt1b9//zvaKVKkiPP/SYXRW2+G4GjP0aYkvffee6pTp84dr8uRg0MDAIA1cc4tAACZyN3dXd27d9eqVasUGhp6x/S4uDhdvnxZklS5cmWFhoaqXLlyzn+XL1/WRx99pOjo6Pt6f29vbxUrVkxnzpxxaXfbtm2aP3++3Nw4NAAAWBPfYAAAZLKXX35Z9evXV9euXbVgwQIdPXpUYWFhWr9+vZ5//nkdP35cjz76qPr376+QkBBNnDhRoaGh2rFjh4YNG6bIyEiXntt7NWjQIC1cuFBLly7V6dOntX79ev373/9OU5sAAJiNsUcAAGSyHDlyaPbs2Vq7dq1WrVqlOXPmKCYmRiVLllSDBg0UGBjoPI/2008/1fTp0/XVV1/J29tbTZs21TvvvJOm9+/atavi4uI0f/58jRs3TsWKFdMrr7yil19+OR2WDgAAc9iMW0/KAQAAAADAghiWDAAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwPMItAAAAAMDyCLcAAAAAAMsj3AIAAAAALI9wCwAAAACwvP8Dm35sH9E0TjYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -981,7 +981,7 @@ "plt.xticks(fontsize = 14)\n", "plt.yticks(fontsize = 10);\n", "plt.xlabel(\"Genre\", fontsize = 15)\n", - "plt.ylabel(\"mfcc4_mean4\", fontsize = 15);" + "plt.ylabel(\"Tempo\", fontsize = 15);" ] }, { @@ -1481,7 +1481,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1491,7 +1491,7 @@ "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0mbayes\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_train_np\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mY_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[0mY_predicted\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mbayes\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 5\u001b[0m \u001b[0meval_result\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mbayes\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0meval\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mY_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mY_predicted\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Train:\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0mbayes\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_train_np\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mY_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[0mY_predicted\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mbayes\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 5\u001b[0m \u001b[0meval_result\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mbayes\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0meval\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mY_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mY_predicted\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Train:\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m\u001b[0m in \u001b[0;36mpredict\u001b[1;34m(self, X)\u001b[0m\n\u001b[0;32m 16\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 17\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m->\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 18\u001b[1;33m \u001b[0mpredictions\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclassifier\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 19\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mpredictions\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 20\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\sklearn\\naive_bayes.py\u001b[0m in \u001b[0;36mpredict\u001b[1;34m(self, X)\u001b[0m\n\u001b[0;32m 75\u001b[0m \"\"\"\n\u001b[0;32m 76\u001b[0m \u001b[0mcheck_is_fitted\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 77\u001b[1;33m \u001b[0mX\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_check_X\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 78\u001b[0m \u001b[0mjll\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_joint_log_likelihood\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 79\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclasses_\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mjll\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\sklearn\\naive_bayes.py\u001b[0m in \u001b[0;36m_check_X\u001b[1;34m(self, X)\u001b[0m\n\u001b[0;32m 214\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 215\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_check_X\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 216\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 217\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 218\u001b[0m \u001b[1;33m@\u001b[0m\u001b[0mstaticmethod\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", @@ -1521,30 +1521,9 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "could not convert string to float: 'metal'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 10\u001b[0m \u001b[0mmodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mGaussianNB\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 11\u001b[1;33m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mY_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 12\u001b[0m \u001b[0mY_train_predicted\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[0mac\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0maccuracy_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mY_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mY_train_predicted\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\sklearn\\naive_bayes.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[0;32m 208\u001b[0m \u001b[0mself\u001b[0m \u001b[1;33m:\u001b[0m \u001b[0mobject\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 209\u001b[0m \"\"\"\n\u001b[1;32m--> 210\u001b[1;33m \u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_validate_data\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 211\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcolumn_or_1d\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwarn\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 212\u001b[0m return self._partial_fit(X, y, np.unique(y), _refit=True,\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\sklearn\\base.py\u001b[0m in \u001b[0;36m_validate_data\u001b[1;34m(self, X, y, reset, validate_separately, **check_params)\u001b[0m\n\u001b[0;32m 430\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mcheck_y_params\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 431\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 432\u001b[1;33m \u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcheck_X_y\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mcheck_params\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 433\u001b[0m \u001b[0mout\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 434\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py\u001b[0m in \u001b[0;36minner_f\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 70\u001b[0m FutureWarning)\n\u001b[0;32m 71\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m{\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0marg\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0marg\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 72\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 73\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0minner_f\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 74\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py\u001b[0m in \u001b[0;36mcheck_X_y\u001b[1;34m(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)\u001b[0m\n\u001b[0;32m 793\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"y cannot be None\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 794\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 795\u001b[1;33m X = check_array(X, accept_sparse=accept_sparse,\n\u001b[0m\u001b[0;32m 796\u001b[0m \u001b[0maccept_large_sparse\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0maccept_large_sparse\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 797\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcopy\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py\u001b[0m in \u001b[0;36minner_f\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 70\u001b[0m FutureWarning)\n\u001b[0;32m 71\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m{\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0marg\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0marg\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 72\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 73\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0minner_f\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 74\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py\u001b[0m in \u001b[0;36mcheck_array\u001b[1;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)\u001b[0m\n\u001b[0;32m 596\u001b[0m \u001b[0marray\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0marray\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcasting\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m\"unsafe\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 597\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 598\u001b[1;33m \u001b[0marray\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0marray\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 599\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mComplexWarning\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 600\u001b[0m raise ValueError(\"Complex data not supported\\n\"\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\numpy\\core\\_asarray.py\u001b[0m in \u001b[0;36masarray\u001b[1;34m(a, dtype, order, like)\u001b[0m\n\u001b[0;32m 100\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0m_asarray_with_like\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlike\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlike\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 101\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 102\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0marray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 103\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 104\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\pandas\\core\\generic.py\u001b[0m in \u001b[0;36m__array__\u001b[1;34m(self, dtype)\u001b[0m\n\u001b[0;32m 1897\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1898\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m__array__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m->\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1899\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_values\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1900\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1901\u001b[0m def __array_wrap__(\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\numpy\\core\\_asarray.py\u001b[0m in \u001b[0;36masarray\u001b[1;34m(a, dtype, order, like)\u001b[0m\n\u001b[0;32m 100\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0m_asarray_with_like\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlike\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlike\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 101\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 102\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0marray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ma\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 103\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 104\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mValueError\u001b[0m: could not convert string to float: 'metal'" - ] - } - ], + "outputs": [], "source": [ "# skrypt losujacy kolumny ze zbioru i sprawdzajacy accuracy na zbiorze trenujacym\n", "\n",