challenging-america-word-ga.../run.py

144 lines
4.5 KiB
Python
Raw Normal View History

2022-04-12 10:01:45 +02:00
#%%
2022-04-29 09:34:44 +02:00
# importy
from torchtext.vocab import build_vocab_from_iterator
from torch.utils.data import DataLoader
import torch
2022-04-12 10:01:45 +02:00
import pandas as pd
2022-04-29 09:34:44 +02:00
import regex as re
2022-04-12 10:01:45 +02:00
import csv
2022-04-29 09:34:44 +02:00
import itertools
from os.path import exists
2022-04-12 10:01:45 +02:00
2022-04-29 09:34:44 +02:00
vocab_size = 30000
embed_size = 150
2022-04-12 10:01:45 +02:00
#%%
2022-04-29 09:34:44 +02:00
# funkcje pomocnicze
2022-04-23 10:07:45 +02:00
def clean(text):
2022-04-29 09:34:44 +02:00
text = str(text).strip().lower()
text = re.sub("|>|<|\.|\\|\"|”|-|,|\*|:|\/", "", text)
text = text.replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have")
text = text.replace("'", "")
2022-04-23 10:07:45 +02:00
return text
2022-04-12 10:01:45 +02:00
2022-04-29 09:34:44 +02:00
def get_words_from_line(line):
line = line.rstrip()
yield '<s>'
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
yield m.group(0).lower()
yield '</s>'
2022-04-12 10:01:45 +02:00
2022-04-29 09:34:44 +02:00
def get_word_lines_from_data(d):
for line in d:
yield get_words_from_line(line)
2022-04-12 10:01:45 +02:00
2022-04-23 10:07:45 +02:00
#%%
2022-04-29 09:34:44 +02:00
class Model(torch.nn.Module):
def __init__(self, vocabulary_size, embedding_size):
super(Model, self).__init__()
self.model = torch.nn.Sequential(
torch.nn.Embedding(vocabulary_size, embedding_size),
torch.nn.Linear(embedding_size, vocabulary_size),
torch.nn.Softmax()
)
def forward(self, x):
return self.model(x)
2022-04-24 17:49:53 +02:00
#%%
2022-04-29 09:34:44 +02:00
class Trigrams(torch.utils.data.IterableDataset):
def __init__(self, data, vocabulary_size):
self.vocab = build_vocab_from_iterator(
get_word_lines_from_data(data),
max_tokens = vocabulary_size,
specials = ['<unk>'])
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.data = data
@staticmethod
def look_ahead_iterator(gen):
w1 = None
for item in gen:
if w1 is not None:
yield (w1, item)
w1 = item
def __iter__(self):
return self.look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_data(self.data))))
#%%
# ładowanie danych treningowych
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)[[6, 7]]
train_expected = pd.read_csv("train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)
train_data = pd.concat([train_in, train_expected], axis=1)
train_data = train_data[6] + train_data[0] + train_data[7]
train_data = train_data.apply(clean)
train_dataset = Trigrams(train_data, vocab_size)
#%%
# trenowanie/wczytywanie modelu
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = Model(vocab_size, embed_size).to(device)
if(not exists('model1.bin')):
data = DataLoader(train_dataset, batch_size=200)
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.NLLLoss()
2022-04-12 10:01:45 +02:00
2022-04-29 09:34:44 +02:00
model.train()
step = 0
for x, y in data:
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
ypredicted = model(x)
loss = criterion(torch.log(ypredicted), y)
if step % 100 == 0:
print(step, loss)
step += 1
loss.backward()
optimizer.step()
torch.save(model.state_dict(), 'model1.bin')
else:
model.load_state_dict(torch.load('model1.bin'))
2022-04-24 17:49:53 +02:00
2022-04-12 10:01:45 +02:00
#%%
2022-04-29 09:34:44 +02:00
vocab = train_dataset.vocab
def predict(tokens):
ixs = torch.tensor(vocab.forward(tokens)).to(device)
out = model(ixs)
top = torch.topk(out[0], 10)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
result = ""
for word, prob in list(zip(top_words, top_probs)):
result += f"{word}:{prob} "
result += f':0.01'
return result
from nltk import word_tokenize
def predict_file(result_path, data):
2022-04-12 10:01:45 +02:00
with open(result_path, "w+", encoding="UTF-8") as f:
2022-04-29 09:34:44 +02:00
for row in data:
2022-04-24 17:49:53 +02:00
result = {}
2022-04-29 09:34:44 +02:00
before = word_tokenize(clean(str(row)))[-1:]
if(len(before) < 1):
2022-04-24 17:49:53 +02:00
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
2022-04-24 20:32:19 +02:00
else:
2022-04-29 09:34:44 +02:00
result = predict(before)
2022-04-24 17:49:53 +02:00
f.write(result + "\n")
print(result)
2022-04-29 09:34:44 +02:00
#%%
dev_data = pd.read_csv("dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
dev_data = dev_data.apply(clean)
predict_file("dev-0/out.tsv", dev_data)
2022-04-12 10:01:45 +02:00
2022-04-29 09:34:44 +02:00
test_data = pd.read_csv("test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
test_data = test_data.apply(clean)
predict_file("test-A/out.tsv", test_data)