2022-04-12 10:01:45 +02:00
|
|
|
|
#%%
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import csv
|
2022-04-24 17:49:53 +02:00
|
|
|
|
import os
|
|
|
|
|
import kenlm
|
2022-04-24 20:32:19 +02:00
|
|
|
|
from collections import Counter, defaultdict
|
|
|
|
|
from math import log10
|
2022-04-12 10:01:45 +02:00
|
|
|
|
|
|
|
|
|
#%%
|
2022-04-23 10:07:45 +02:00
|
|
|
|
def clean(text):
|
2022-04-24 20:32:19 +02:00
|
|
|
|
text = str(text).lower().strip().replace("’", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "").replace(".", "").replace("'", "".replace("”", "").replace(">", ""))
|
2022-04-23 10:07:45 +02:00
|
|
|
|
return text
|
2022-04-12 10:01:45 +02:00
|
|
|
|
|
2022-04-23 10:07:45 +02:00
|
|
|
|
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)[[6, 7]]
|
|
|
|
|
train_expected = pd.read_csv("train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)
|
|
|
|
|
data = pd.concat([train_in, train_expected], axis=1)
|
|
|
|
|
data = data[6] + data[0] + data[7]
|
|
|
|
|
data = data.apply(clean)
|
2022-04-12 10:01:45 +02:00
|
|
|
|
|
2022-04-24 17:49:53 +02:00
|
|
|
|
if not os.path.isfile('train_file.txt'):
|
|
|
|
|
with open("train_file.txt", "w+") as f:
|
|
|
|
|
for text in data:
|
|
|
|
|
f.write(text + "\n")
|
2022-04-12 10:01:45 +02:00
|
|
|
|
|
2022-04-23 10:07:45 +02:00
|
|
|
|
#%%
|
2022-04-24 20:32:19 +02:00
|
|
|
|
#get_ipython().system('../kenlm/build/bin/lmplz -o 4 < train_file.txt > model.arpa --skip_symbols')
|
2022-04-24 17:49:53 +02:00
|
|
|
|
model = kenlm.Model("model.arpa")
|
|
|
|
|
#%%
|
|
|
|
|
import nltk
|
2022-04-24 20:32:19 +02:00
|
|
|
|
from nltk import word_tokenize
|
2022-04-24 17:49:53 +02:00
|
|
|
|
nltk.download('punkt')
|
2022-04-12 10:01:45 +02:00
|
|
|
|
|
2022-04-24 17:49:53 +02:00
|
|
|
|
most_common = defaultdict(lambda: 0)
|
|
|
|
|
for text in data:
|
|
|
|
|
words = word_tokenize(text)
|
|
|
|
|
if "d" in words:
|
|
|
|
|
words.remove("d")
|
|
|
|
|
for w in words:
|
|
|
|
|
most_common[w] += 1
|
|
|
|
|
most_common = Counter(most_common).most_common(8000)
|
|
|
|
|
|
2022-04-12 10:01:45 +02:00
|
|
|
|
#%%
|
2022-04-23 10:07:45 +02:00
|
|
|
|
def predict(path, result_path):
|
2022-04-24 20:32:19 +02:00
|
|
|
|
data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)
|
2022-04-12 10:01:45 +02:00
|
|
|
|
with open(result_path, "w+", encoding="UTF-8") as f:
|
2022-04-24 20:32:19 +02:00
|
|
|
|
for i, row in data.iterrows():
|
2022-04-24 17:49:53 +02:00
|
|
|
|
result = {}
|
2022-04-24 20:32:19 +02:00
|
|
|
|
before = word_tokenize(clean(str(row[6])))[-3:]
|
|
|
|
|
if(len(before) < 2):
|
2022-04-24 17:49:53 +02:00
|
|
|
|
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
2022-04-24 20:32:19 +02:00
|
|
|
|
else:
|
|
|
|
|
for w in most_common:
|
|
|
|
|
word = w[0]
|
|
|
|
|
prob = model.score(" ".join(before + [word]))
|
|
|
|
|
result[word] = prob
|
|
|
|
|
predictions = dict(Counter(result).most_common(12))
|
|
|
|
|
result = ""
|
|
|
|
|
for word, prob in predictions.items():
|
|
|
|
|
result += f"{word}:{prob} "
|
|
|
|
|
result += f':{log10(0.99)}'
|
2022-04-24 17:49:53 +02:00
|
|
|
|
f.write(result + "\n")
|
|
|
|
|
print(result)
|
|
|
|
|
|
2022-04-12 10:01:45 +02:00
|
|
|
|
|
2022-04-23 10:07:45 +02:00
|
|
|
|
predict("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
2022-04-24 20:32:19 +02:00
|
|
|
|
predict("test-A/in.tsv.xz", "test-A/out.tsv")
|