lstm
This commit is contained in:
parent
b61e3e981c
commit
023903113d
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
169
run.py
169
run.py
@ -20,8 +20,9 @@ import csv
|
||||
import itertools
|
||||
from os.path import exists
|
||||
|
||||
vocab_size = 30000
|
||||
embed_size = 150
|
||||
vocab_size = 15000
|
||||
embed_size = 128
|
||||
lstm_size = 128
|
||||
|
||||
# funkcje pomocnicze
|
||||
def clean(text):
|
||||
@ -46,17 +47,29 @@ def get_word_lines_from_data(d):
|
||||
yield get_words_from_line(line)
|
||||
|
||||
class Model(torch.nn.Module):
|
||||
def __init__(self, vocabulary_size, embedding_size):
|
||||
def __init__(self, vocabulary_size, embedding_size, lstm_size):
|
||||
super(Model, self).__init__()
|
||||
self.model = torch.nn.Sequential(
|
||||
torch.nn.Embedding(vocabulary_size, embedding_size),
|
||||
torch.nn.Linear(embedding_size, vocabulary_size),
|
||||
torch.nn.Softmax()
|
||||
self.lstm_size = lstm_size
|
||||
self.embedding_dim = embedding_size
|
||||
self.num_layers = 3
|
||||
|
||||
self.embedding = torch.nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=self.embedding_dim,
|
||||
)
|
||||
self.lstm = torch.nn.LSTM(
|
||||
input_size=self.lstm_size,
|
||||
hidden_size=self.lstm_size,
|
||||
num_layers=self.num_layers,
|
||||
dropout=0.2,
|
||||
)
|
||||
self.fc = torch.nn.Linear(self.lstm_size, vocab_size)
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
def forward(self, x, prev_state = None):
|
||||
embed = self.embedding(x)
|
||||
output, state = self.lstm(embed, prev_state)
|
||||
logits = self.fc(output)
|
||||
return logits, state
|
||||
|
||||
class Trigrams(torch.utils.data.IterableDataset):
|
||||
def __init__(self, data, vocabulary_size):
|
||||
@ -82,37 +95,41 @@ class Trigrams(torch.utils.data.IterableDataset):
|
||||
|
||||
|
||||
# ładowanie danych treningowych
|
||||
train_in = pd.read_csv("gdrive/MyDrive/train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)[[6, 7]]
|
||||
train_expected = pd.read_csv("gdrive/MyDrive/train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)
|
||||
train_in = pd.read_csv("gdrive/MyDrive/train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=20000)[[6, 7]]
|
||||
train_expected = pd.read_csv("gdrive/MyDrive/train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=20000)
|
||||
train_data = pd.concat([train_in, train_expected], axis=1)
|
||||
train_data = train_data[6] + train_data[0] + train_data[7]
|
||||
train_data = train_data.apply(clean)
|
||||
train_dataset = Trigrams(train_data, vocab_size)
|
||||
train_dataset_rev = Trigrams(train_data.iloc[::-1], vocab_size)
|
||||
|
||||
# trenowanie/wczytywanie modelu
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
model = Model(vocab_size, embed_size).to(device)
|
||||
model = Model(vocab_size, embed_size, lstm_size).to(device)
|
||||
print(device)
|
||||
|
||||
if(not exists('model1.bin')):
|
||||
data = DataLoader(train_dataset, batch_size=8000)
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
criterion = torch.nn.NLLLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
|
||||
model.train()
|
||||
step = 0
|
||||
for i in range(2):
|
||||
for i in range(1):
|
||||
print(f"EPOCH {i}=========================")
|
||||
for x, y in data:
|
||||
optimizer.zero_grad()
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
optimizer.zero_grad()
|
||||
ypredicted = model(x)
|
||||
loss = criterion(torch.log(ypredicted), y)
|
||||
|
||||
y_pred, state_h = model(x)
|
||||
loss = criterion(y_pred, y)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if step % 100 == 0:
|
||||
print(step, loss)
|
||||
step += 1
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
torch.save(model.state_dict(), 'model1.bin')
|
||||
else:
|
||||
@ -122,47 +139,115 @@ else:
|
||||
|
||||
vocab = train_dataset.vocab
|
||||
|
||||
def predict(tokens):
|
||||
ixs = torch.tensor(vocab.forward(tokens)).to(device)
|
||||
# trenowanie/wczytywanie modelu
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
model_b = Model(vocab_size, embed_size, lstm_size).to(device)
|
||||
print(device)
|
||||
|
||||
if(not exists('model1_b.bin')):
|
||||
data_b = DataLoader(train_dataset_rev, batch_size=8000)
|
||||
optimizer = torch.optim.Adam(model_b.parameters(), lr=0.001)
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
|
||||
model_b.train()
|
||||
step = 0
|
||||
for i in range(1):
|
||||
print(f"EPOCH {i}=========================")
|
||||
for x, y in data:
|
||||
optimizer.zero_grad()
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
|
||||
y_pred, state_h = model_b(x)
|
||||
loss = criterion(y_pred, y)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if step % 100 == 0:
|
||||
print(step, loss)
|
||||
step += 1
|
||||
|
||||
torch.save(model_b.state_dict(), 'model1_b.bin')
|
||||
else:
|
||||
print("Loading model1")
|
||||
model_b.load_state_dict(torch.load('model1_b.bin'))
|
||||
|
||||
import numpy as np
|
||||
|
||||
def predict(tokens_left, tokens_right):
|
||||
ixs = torch.tensor(vocab.forward(tokens_left)).to(device)
|
||||
ixs_r = torch.tensor(vocab.forward(tokens_right)).to(device)
|
||||
|
||||
out = model(ixs)
|
||||
out_b = model_b(ixs_r)
|
||||
|
||||
top = torch.topk(out[0], 8)
|
||||
top_indices = top.indices.tolist()
|
||||
top_probs = top.values.tolist()
|
||||
top_words = vocab.lookup_tokens(top_indices)
|
||||
top_b = torch.topk(out_b[0], 8)
|
||||
top_indices = top.indices.tolist()[0]
|
||||
top_probs = top.values.tolist()[0]
|
||||
top_indices_b = top_b.indices.tolist()[0]
|
||||
top_probs_b = top_b.values.tolist()[0]
|
||||
|
||||
|
||||
raw_result = []
|
||||
for ind in set(top_indices + top_indices_b):
|
||||
prob = 0
|
||||
if(ind in top_indices):
|
||||
prob += top_probs[top_indices.index(ind)]
|
||||
if(ind in top_indices_b):
|
||||
prob += top_probs_b[top_indices_b.index(ind)]
|
||||
raw_result += [[vocab.lookup_token(ind), prob]]
|
||||
raw_result = list(filter(lambda x: x[0] != "<unk>", raw_result))
|
||||
raw_result = sorted(raw_result, key=lambda x: -x[1])[:8]
|
||||
|
||||
words = [x[0] for x in raw_result]
|
||||
probs = [x[1] for x in raw_result]
|
||||
|
||||
probs_x = np.exp(probs)/sum(np.exp(probs))
|
||||
result = ""
|
||||
for word, prob in list(zip(top_words, top_probs)):
|
||||
result += f"{word}:{prob} "
|
||||
# result += f':0.01'
|
||||
for word, prob in list(zip(words,probs_x)):
|
||||
result += f"{word}:{prob} "
|
||||
result += ":0.3"
|
||||
result = result.rstrip()
|
||||
return result
|
||||
|
||||
from nltk import word_tokenize
|
||||
def predict_file(result_path, data):
|
||||
with open(result_path, "w+", encoding="UTF-8") as f:
|
||||
for row in data:
|
||||
for index, row in data.iterrows():
|
||||
result = {}
|
||||
before = None
|
||||
for before in get_words_from_line(clean(str(row)), False):
|
||||
after = None
|
||||
for after in get_words_from_line(clean(str(row[7])), False):
|
||||
after = [after]
|
||||
break
|
||||
for before in get_words_from_line(clean(str(row[6])), False):
|
||||
pass
|
||||
before = [before]
|
||||
print(before)
|
||||
if(len(before) < 1):
|
||||
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
||||
if(len(before) < 1 and len(after) < 1):
|
||||
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
||||
else:
|
||||
result = predict(before)
|
||||
result = predict(before, after)
|
||||
result = result.strip()
|
||||
f.write(result + "\n")
|
||||
print(result)
|
||||
f.write(result + "\n")
|
||||
|
||||
|
||||
dev_data = pd.read_csv("gdrive/MyDrive/dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
||||
dev_data = dev_data.apply(clean)
|
||||
dev_data = pd.read_csv("gdrive/MyDrive/dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)
|
||||
dev_data[6] = dev_data[6].apply(clean)
|
||||
dev_data[7] = dev_data[7].apply(clean)
|
||||
|
||||
predict_file("gdrive/MyDrive/dev-0/out.tsv", dev_data)
|
||||
|
||||
test_data = pd.read_csv("gdrive/MyDrive/test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
||||
test_data = test_data.apply(clean)
|
||||
test_data = pd.read_csv("gdrive/MyDrive/test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)
|
||||
test_data[6] = test_data[6].apply(clean)
|
||||
test_data[7] = test_data[7].apply(clean)
|
||||
predict_file("gdrive/MyDrive/test-A/out.tsv", test_data)
|
||||
|
||||
# !wget https://gonito.net/get/bin/geval
|
||||
# !chmod 777 geval
|
||||
|
||||
!rm -r dev-0
|
||||
|
||||
!cp -r gdrive/MyDrive/dev-0 dev-0
|
||||
!./geval -t dev-0 --metric PerplexityHashed
|
||||
|
||||
!rm -r dev-0
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user