test3
This commit is contained in:
parent
9351a7163c
commit
1673116cf1
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
13
run.py
13
run.py
@ -11,18 +11,19 @@ class Model:
|
|||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.model = defaultdict(lambda: defaultdict(lambda: 0))
|
self.model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
self.model_bi = defaultdict(lambda: defaultdict(lambda: 0))
|
self.model_bi = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=30000)[[6, 7]]
|
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)[[6, 7]]
|
||||||
train_expected = pd.read_csv("train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=30000)
|
train_expected = pd.read_csv("train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)
|
||||||
data = pd.concat([train_in, train_expected], axis=1)
|
data = pd.concat([train_in, train_expected], axis=1)
|
||||||
self.data = data[6] + data[0] + data[7]
|
self.data = data[6] + data[0] + data[7]
|
||||||
self.data = self.data.apply(self.clean)
|
self.data = self.data.apply(self.clean)
|
||||||
|
|
||||||
|
|
||||||
def clean(self, text):
|
def clean(self, text):
|
||||||
text = str(text).lower().strip().replace("’", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "")
|
text = str(text).lower().strip().replace("’", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "")
|
||||||
return text
|
return text
|
||||||
|
|
||||||
def train(self):
|
def train(self):
|
||||||
alpha = 0.4
|
alpha = 0.6
|
||||||
vocab = set()
|
vocab = set()
|
||||||
for text in model.data:
|
for text in model.data:
|
||||||
words = word_tokenize(text)
|
words = word_tokenize(text)
|
||||||
@ -35,14 +36,12 @@ class Model:
|
|||||||
self.model_bi[w1][w2] +=1
|
self.model_bi[w1][w2] +=1
|
||||||
for w1, w2 in self.model:
|
for w1, w2 in self.model:
|
||||||
total_count = float(sum(self.model[w1, w2].values()))
|
total_count = float(sum(self.model[w1, w2].values()))
|
||||||
denominator = total_count * len(vocab)
|
|
||||||
for w in self.model[w1, w2]:
|
for w in self.model[w1, w2]:
|
||||||
self.model[w1, w2][w] = self.model[w1, w2][w] / denominator * alpha
|
self.model[w1, w2][w] = (self.model[w1, w2][w] / total_count) * alpha
|
||||||
for w1 in self.model_bi:
|
for w1 in self.model_bi:
|
||||||
total_count = float(sum(self.model_bi[w1].values()))
|
total_count = float(sum(self.model_bi[w1].values()))
|
||||||
denominator = total_count * len(vocab)
|
|
||||||
for w in self.model_bi[w1]:
|
for w in self.model_bi[w1]:
|
||||||
self.model_bi[w1][w] = self.model_bi[w1][w] / denominator * (1-alpha)
|
self.model_bi[w1][w] = (self.model_bi[w1][w] / total_count) * (1-alpha)
|
||||||
|
|
||||||
def predict(self, words):
|
def predict(self, words):
|
||||||
trigrams = Counter(dict(self.model[words]))
|
trigrams = Counter(dict(self.model[words]))
|
||||||
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user