nn - bigrams
This commit is contained in:
parent
2a93b66184
commit
27944ca2c8
3
.gitignore
vendored
3
.gitignore
vendored
@ -9,4 +9,5 @@
|
||||
geval
|
||||
*in.tsv
|
||||
train_file.txt
|
||||
model.arpa
|
||||
model.arpa
|
||||
model*.bin
|
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
166
run.py
166
run.py
@ -1,66 +1,144 @@
|
||||
#%%
|
||||
# importy
|
||||
from torchtext.vocab import build_vocab_from_iterator
|
||||
from torch.utils.data import DataLoader
|
||||
import torch
|
||||
import pandas as pd
|
||||
import regex as re
|
||||
import csv
|
||||
import os
|
||||
import kenlm
|
||||
from collections import Counter, defaultdict
|
||||
from math import log10
|
||||
import itertools
|
||||
from os.path import exists
|
||||
|
||||
vocab_size = 30000
|
||||
embed_size = 150
|
||||
#%%
|
||||
# funkcje pomocnicze
|
||||
def clean(text):
|
||||
text = str(text).lower().strip().replace("’", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "").replace(".", "").replace("'", "".replace("”", "").replace(">", ""))
|
||||
text = str(text).strip().lower()
|
||||
text = re.sub("’|>|<|\.|\\|\"|”|-|,|\*|:|\/", "", text)
|
||||
text = text.replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have")
|
||||
text = text.replace("'", "")
|
||||
return text
|
||||
|
||||
def get_words_from_line(line):
|
||||
line = line.rstrip()
|
||||
yield '<s>'
|
||||
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
|
||||
yield m.group(0).lower()
|
||||
yield '</s>'
|
||||
|
||||
|
||||
def get_word_lines_from_data(d):
|
||||
for line in d:
|
||||
yield get_words_from_line(line)
|
||||
|
||||
#%%
|
||||
class Model(torch.nn.Module):
|
||||
def __init__(self, vocabulary_size, embedding_size):
|
||||
super(Model, self).__init__()
|
||||
self.model = torch.nn.Sequential(
|
||||
torch.nn.Embedding(vocabulary_size, embedding_size),
|
||||
torch.nn.Linear(embedding_size, vocabulary_size),
|
||||
torch.nn.Softmax()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
#%%
|
||||
class Trigrams(torch.utils.data.IterableDataset):
|
||||
def __init__(self, data, vocabulary_size):
|
||||
self.vocab = build_vocab_from_iterator(
|
||||
get_word_lines_from_data(data),
|
||||
max_tokens = vocabulary_size,
|
||||
specials = ['<unk>'])
|
||||
self.vocab.set_default_index(self.vocab['<unk>'])
|
||||
self.vocabulary_size = vocabulary_size
|
||||
self.data = data
|
||||
|
||||
@staticmethod
|
||||
def look_ahead_iterator(gen):
|
||||
w1 = None
|
||||
for item in gen:
|
||||
if w1 is not None:
|
||||
yield (w1, item)
|
||||
w1 = item
|
||||
|
||||
def __iter__(self):
|
||||
return self.look_ahead_iterator(
|
||||
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_data(self.data))))
|
||||
|
||||
|
||||
#%%
|
||||
# ładowanie danych treningowych
|
||||
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)[[6, 7]]
|
||||
train_expected = pd.read_csv("train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)
|
||||
data = pd.concat([train_in, train_expected], axis=1)
|
||||
data = data[6] + data[0] + data[7]
|
||||
data = data.apply(clean)
|
||||
|
||||
if not os.path.isfile('train_file.txt'):
|
||||
with open("train_file.txt", "w+") as f:
|
||||
for text in data:
|
||||
f.write(text + "\n")
|
||||
train_data = pd.concat([train_in, train_expected], axis=1)
|
||||
train_data = train_data[6] + train_data[0] + train_data[7]
|
||||
train_data = train_data.apply(clean)
|
||||
train_dataset = Trigrams(train_data, vocab_size)
|
||||
|
||||
#%%
|
||||
#get_ipython().system('../kenlm/build/bin/lmplz -o 4 < train_file.txt > model.arpa --skip_symbols')
|
||||
model = kenlm.Model("model.arpa")
|
||||
# trenowanie/wczytywanie modelu
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
model = Model(vocab_size, embed_size).to(device)
|
||||
if(not exists('model1.bin')):
|
||||
data = DataLoader(train_dataset, batch_size=200)
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
criterion = torch.nn.NLLLoss()
|
||||
|
||||
model.train()
|
||||
step = 0
|
||||
for x, y in data:
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
optimizer.zero_grad()
|
||||
ypredicted = model(x)
|
||||
loss = criterion(torch.log(ypredicted), y)
|
||||
if step % 100 == 0:
|
||||
print(step, loss)
|
||||
step += 1
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
torch.save(model.state_dict(), 'model1.bin')
|
||||
else:
|
||||
model.load_state_dict(torch.load('model1.bin'))
|
||||
|
||||
#%%
|
||||
import nltk
|
||||
vocab = train_dataset.vocab
|
||||
|
||||
def predict(tokens):
|
||||
ixs = torch.tensor(vocab.forward(tokens)).to(device)
|
||||
out = model(ixs)
|
||||
top = torch.topk(out[0], 10)
|
||||
top_indices = top.indices.tolist()
|
||||
top_probs = top.values.tolist()
|
||||
top_words = vocab.lookup_tokens(top_indices)
|
||||
result = ""
|
||||
for word, prob in list(zip(top_words, top_probs)):
|
||||
result += f"{word}:{prob} "
|
||||
result += f':0.01'
|
||||
return result
|
||||
|
||||
from nltk import word_tokenize
|
||||
nltk.download('punkt')
|
||||
|
||||
most_common = defaultdict(lambda: 0)
|
||||
for text in data:
|
||||
words = word_tokenize(text)
|
||||
if "d" in words:
|
||||
words.remove("d")
|
||||
for w in words:
|
||||
most_common[w] += 1
|
||||
most_common = Counter(most_common).most_common(8000)
|
||||
|
||||
#%%
|
||||
def predict(path, result_path):
|
||||
data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)
|
||||
def predict_file(result_path, data):
|
||||
with open(result_path, "w+", encoding="UTF-8") as f:
|
||||
for i, row in data.iterrows():
|
||||
for row in data:
|
||||
result = {}
|
||||
before = word_tokenize(clean(str(row[6])))[-3:]
|
||||
if(len(before) < 2):
|
||||
before = word_tokenize(clean(str(row)))[-1:]
|
||||
if(len(before) < 1):
|
||||
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
||||
else:
|
||||
for w in most_common:
|
||||
word = w[0]
|
||||
prob = model.score(" ".join(before + [word]))
|
||||
result[word] = prob
|
||||
predictions = dict(Counter(result).most_common(12))
|
||||
result = ""
|
||||
for word, prob in predictions.items():
|
||||
result += f"{word}:{prob} "
|
||||
result += f':{log10(0.99)}'
|
||||
result = predict(before)
|
||||
f.write(result + "\n")
|
||||
print(result)
|
||||
|
||||
#%%
|
||||
dev_data = pd.read_csv("dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
||||
dev_data = dev_data.apply(clean)
|
||||
predict_file("dev-0/out.tsv", dev_data)
|
||||
|
||||
predict("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
||||
predict("test-A/in.tsv.xz", "test-A/out.tsv")
|
||||
test_data = pd.read_csv("test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
||||
test_data = test_data.apply(clean)
|
||||
predict_file("test-A/out.tsv", test_data)
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user