This commit is contained in:
adnovac 2022-04-24 20:32:19 +02:00
parent 4da339c309
commit 2a93b66184
3 changed files with 17953 additions and 17952 deletions

File diff suppressed because it is too large Load Diff

33
run.py
View File

@ -3,12 +3,12 @@ import pandas as pd
import csv
import os
import kenlm
from nltk import word_tokenize
from collections import defaultdict, Counter
from collections import Counter, defaultdict
from math import log10
#%%
def clean(text):
text = str(text).lower().strip().replace("", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "").replace(".", "").replace("'", "".replace("", ""))
text = str(text).lower().strip().replace("", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "").replace(".", "").replace("'", "".replace("", "").replace(">", ""))
return text
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)[[6, 7]]
@ -23,14 +23,13 @@ if not os.path.isfile('train_file.txt'):
f.write(text + "\n")
#%%
#!../kenlm/build/bin/lmplz -o 4 < train_file.txt > model.arpa
#get_ipython().system('../kenlm/build/bin/lmplz -o 4 < train_file.txt > model.arpa --skip_symbols')
model = kenlm.Model("model.arpa")
#%%
import nltk
from nltk import word_tokenize
nltk.download('punkt')
#%%
most_common = defaultdict(lambda: 0)
for text in data:
words = word_tokenize(text)
@ -42,24 +41,26 @@ most_common = Counter(most_common).most_common(8000)
#%%
def predict(path, result_path):
data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[7]
data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)
with open(result_path, "w+", encoding="UTF-8") as f:
for text in data:
for i, row in data.iterrows():
result = {}
for word in most_common:
prob = model.score(text + f" {word[0]}")
result[word[0]] = prob
predictions = dict(Counter(result).most_common(6))
before = word_tokenize(clean(str(row[6])))[-3:]
if(len(before) < 2):
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
else:
for w in most_common:
word = w[0]
prob = model.score(" ".join(before + [word]))
result[word] = prob
predictions = dict(Counter(result).most_common(12))
result = ""
for word, prob in predictions.items():
result += f"{word}:{prob} "
result = result.rstrip()
if len(result) == 0:
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
result += f':{log10(0.99)}'
f.write(result + "\n")
print(result)
predict("dev-0/in.tsv.xz", "dev-0/out.tsv")
predict("test-A/in.tsv.xz", "test-A/out.tsv")
# %%

File diff suppressed because it is too large Load Diff