This commit is contained in:
adnovac 2022-04-24 17:49:53 +02:00
parent 2535098bfb
commit 4da339c309
4 changed files with 17976 additions and 16 deletions

1
.gitignore vendored
View File

@ -9,3 +9,4 @@
geval geval
*in.tsv *in.tsv
train_file.txt train_file.txt
model.arpa

10519
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

54
run.py
View File

@ -1,11 +1,14 @@
#%% #%%
import pandas as pd import pandas as pd
import kenlm
import csv import csv
import os
import kenlm
from nltk import word_tokenize
from collections import defaultdict, Counter
#%% #%%
def clean(text): def clean(text):
text = str(text).lower().strip().replace("", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "") text = str(text).lower().strip().replace("", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "").replace(".", "").replace("'", "".replace("", ""))
return text return text
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)[[6, 7]] train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)[[6, 7]]
@ -14,26 +17,49 @@ data = pd.concat([train_in, train_expected], axis=1)
data = data[6] + data[0] + data[7] data = data[6] + data[0] + data[7]
data = data.apply(clean) data = data.apply(clean)
with open("train_file.txt", "w+") as f: if not os.path.isfile('train_file.txt'):
for text in data: with open("train_file.txt", "w+") as f:
f.write(text + "\n") for text in data:
f.write(text + "\n")
#%%
KENLM_BUILD_PATH='../kenlm/build'
!$KENLM_BUILD_PATH/bin/lmplz -o 4 < train_file.txt > model.arpa
!rm train_file.txt
#%% #%%
#!../kenlm/build/bin/lmplz -o 4 < train_file.txt > model.arpa
model = kenlm.Model("model.arpa") model = kenlm.Model("model.arpa")
#%%
import nltk
nltk.download('punkt')
#%%
most_common = defaultdict(lambda: 0)
for text in data:
words = word_tokenize(text)
if "d" in words:
words.remove("d")
for w in words:
most_common[w] += 1
most_common = Counter(most_common).most_common(8000)
#%% #%%
def predict(path, result_path): def predict(path, result_path):
data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[7] data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[7]
with open(result_path, "w+", encoding="UTF-8") as f: with open(result_path, "w+", encoding="UTF-8") as f:
for text in data: for text in data:
#test result = {}
print(model.score(text, bos = True, eos = True)) for word in most_common:
break prob = model.score(text + f" {word[0]}")
result[word[0]] = prob
predictions = dict(Counter(result).most_common(6))
result = ""
for word, prob in predictions.items():
result += f"{word}:{prob} "
result = result.rstrip()
if len(result) == 0:
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
f.write(result + "\n")
print(result)
predict("dev-0/in.tsv.xz", "dev-0/out.tsv") predict("dev-0/in.tsv.xz", "dev-0/out.tsv")
predict("test-A/in.tsv.xz", "test-A/out.tsv") predict("test-A/in.tsv.xz", "test-A/out.tsv")
# %%

7414
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff